Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (6): 20220023.doi: 10.7503/cjcu20220023
• Organic Chemistry • Previous Articles Next Articles
ZHU Kai1, LI Jie1, WU Xiaoyi1, HU Weiwei1, WU Dongmei1, YU Chengxiao1, GE Zhiwei4, YE Xingqian1,2,3, CHEN Shiguo1,2,3()
Received:
2022-01-09
Online:
2022-06-10
Published:
2022-02-16
Contact:
CHEN Shiguo
E-mail:chenshiguo210@163.com
Supported by:
CLC Number:
TrendMD:
ZHU Kai, LI Jie, WU Xiaoyi, HU Weiwei, WU Dongmei, YU Chengxiao, GE Zhiwei, YE Xingqian, CHEN Shiguo. Combined PGC-Triple-Tof-MS Enables the Separation, Identification of Sugar Beet Pectin Derived Oligomers[J]. Chem. J. Chinese Universities, 2022, 43(6): 20220023.
Content | SBP | SBPW | SBP1 | SBP2 | SBP3 | SBP4 | SBP5 |
---|---|---|---|---|---|---|---|
Fuc | N.D. f | n.d. | 14.61 | 3.30 | N.D. | 0.21 | N.D. |
Rha | 16.09±0.44 | 11.34 | 12.9 | 19.9 | 13.16 | 5.11 | 6.15 |
Ara | 13.67±1.36 | 39.09 | 21.23 | 22.59 | 14.78 | 12.12 | 8.14 |
Gal | 2.01±0.52 | 18.32 | 10.31 | 11.58 | 15 | 9.54 | 6.16 |
Glc | 0.16±0.21 | 5.87 | 4.51 | 5.99 | 1.54 | 3.4 | N.D. |
Man | 0.99±0.29 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
Xyl | 2.29±1.49 | N.D. | N.D. | N.D. | N.D. | .N.D. | 5.23 |
GalA | 57.02±0.39 | 25.38 | 35.50 | 35.04 | 52.44 | 69.14 | 74.26 |
GlcA | N.D. | N.D. | 0.94 | 1.61 | 3.08 | 0.48 | N.D. |
Rha/GalA | 0.28 | 0.45 | 0.36 | 0.57 | 0.25 | 0.07 | 0.08 |
HG(%) a | 40.93 | 14.04 | 22.6 | 15.14 | 39.28 | 64.03 | 68.11 |
RG?Ⅰ(%) b | 32.18 | 22.68 | 25.80 | 39.80 | 26.32 | 10.22 | 12.30 |
DM c | 43.14±0.09 | 5.14 | 66.16 | 48.93 | 29.46 | 20.48 | 10.13 |
DAc d | 21.23±0.12 | 3.38 | 17.89 | 10.13 | 7.68 | N.D. | N.D. |
10-3Mwe | 344.4±0.73 | 1.10±2.62 | 55.36±0.63 | 100.2±0.36 | 41.45±0.49 | 74.43±0.35 | 74.39±1.82 |
Mw/Mn | 2.56±1.86 | 4.39±1.23 | 2.31±1.69 | 2.88±1.43 | 1.56±1.34 | 1.84±0.75 | 2.63±7.26 |
Table 1 Monosaccharide composition(%, molar fraction) and molecular weight of pectin
Content | SBP | SBPW | SBP1 | SBP2 | SBP3 | SBP4 | SBP5 |
---|---|---|---|---|---|---|---|
Fuc | N.D. f | n.d. | 14.61 | 3.30 | N.D. | 0.21 | N.D. |
Rha | 16.09±0.44 | 11.34 | 12.9 | 19.9 | 13.16 | 5.11 | 6.15 |
Ara | 13.67±1.36 | 39.09 | 21.23 | 22.59 | 14.78 | 12.12 | 8.14 |
Gal | 2.01±0.52 | 18.32 | 10.31 | 11.58 | 15 | 9.54 | 6.16 |
Glc | 0.16±0.21 | 5.87 | 4.51 | 5.99 | 1.54 | 3.4 | N.D. |
Man | 0.99±0.29 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
Xyl | 2.29±1.49 | N.D. | N.D. | N.D. | N.D. | .N.D. | 5.23 |
GalA | 57.02±0.39 | 25.38 | 35.50 | 35.04 | 52.44 | 69.14 | 74.26 |
GlcA | N.D. | N.D. | 0.94 | 1.61 | 3.08 | 0.48 | N.D. |
Rha/GalA | 0.28 | 0.45 | 0.36 | 0.57 | 0.25 | 0.07 | 0.08 |
HG(%) a | 40.93 | 14.04 | 22.6 | 15.14 | 39.28 | 64.03 | 68.11 |
RG?Ⅰ(%) b | 32.18 | 22.68 | 25.80 | 39.80 | 26.32 | 10.22 | 12.30 |
DM c | 43.14±0.09 | 5.14 | 66.16 | 48.93 | 29.46 | 20.48 | 10.13 |
DAc d | 21.23±0.12 | 3.38 | 17.89 | 10.13 | 7.68 | N.D. | N.D. |
10-3Mwe | 344.4±0.73 | 1.10±2.62 | 55.36±0.63 | 100.2±0.36 | 41.45±0.49 | 74.43±0.35 | 74.39±1.82 |
Mw/Mn | 2.56±1.86 | 4.39±1.23 | 2.31±1.69 | 2.88±1.43 | 1.56±1.34 | 1.84±0.75 | 2.63±7.26 |
tR/min | m/z | Pseudomolecular Ion | Chemical structure | Graphical structure |
---|---|---|---|---|
4.1 | 389.16 | [M+HCOO]- | Gal1→4Gal | ![]() |
4.9 | 283.11 | [M-H]- | Ara1→5Ara | ![]() |
10.3 | 343.14 | [M+HCOO]- | Ara1→4Rha | ![]() |
12.4 | 371.08 | [M-H]- | GalA1→4GalA | ![]() |
13.7 | 551.19 | [M+HCOO]- | Gal1→4Gal1→4Gal | ![]() |
17.8 | 461.04 | [M+HCOO]-- | Ara1→5Ara1→5Ara | ![]() |
19.9 | 445.15 | [M-H]- | Ara1→5Ara1→2Gal | ![]() |
21.1 | 547.15 | [M-H]- | GalA1→4GalA1→4GalA | ![]() |
25.2 | 593.19 | [M+HCOO]- | Ara1→5Ara1→5Ara1→5Ara | ![]() |
26.5 | 713.24 | [M+HCOO]- | Gal1→4Gal1→4Gal1→4Gal | ![]() |
27.3 | 799.24 | [M-]- | Gal1→4Gal(X→1Ara)1→4Gal1→4Gal | ![]() |
27.8 | 649.15 | [M-]- | Gal1→4Rha1→4GalA1→2Rha | ![]() |
30.3 | 679.21 | [M-H]- | Ara1→5Ara1→5Ara1→5Ara1→5Ara | ![]() |
31.3 | 663.18 | [M-H]- | GalA1→2Rha1→4 GalA1→2Rha | ![]() |
33.3 | [M-H]- | Gal1→4Gal1→4Gal1→4Gal1→4Gal | ![]() | |
35.1 | 723.12 | [M-H]- | GalA1→4GalA1→4GalA1→4GalA | ![]() |
36.6 | 801.27 | [M-H]- | Gal1→4Gal1→4Gal1→5Ara1→XRha | ![]() |
38.7 | 801.26 | [M-H]- | Gal1→4Gal1→4Gal1→4Gal1→5Ara | ![]() |
41.6 | 899.12 | [M-H]- | GalA1→4GalA1→4GalA1→4GalA1→4aA | ![]() |
42.1 | 857.27 | [M+HCOO]- | Ara1→5Ara1→5Ara1→5Ara1→5Ara1→5Ara | ![]() |
42.9 | 1037.34 | [M+HCOO]- | Gal1→4Gal1→4Gal1→4Gal1→4Gal1→4Gal | ![]() |
44.0 | 809.23 | [M-H]- | GalA1→2Rha1→4Rha1→4GalA1→2Rha | ![]() |
46.4 | 809.23 | [M-H]- | Rha1→4GalA1→2Rha1→4GalA1→2Rha | ![]() |
48.6 | 839.21 | [M-H]- | Rha1→4GalA1→2Rha1→4GalA1→4GalA1→4GalA | ![]() |
Table 2 Signal attribution of SBPW
tR/min | m/z | Pseudomolecular Ion | Chemical structure | Graphical structure |
---|---|---|---|---|
4.1 | 389.16 | [M+HCOO]- | Gal1→4Gal | ![]() |
4.9 | 283.11 | [M-H]- | Ara1→5Ara | ![]() |
10.3 | 343.14 | [M+HCOO]- | Ara1→4Rha | ![]() |
12.4 | 371.08 | [M-H]- | GalA1→4GalA | ![]() |
13.7 | 551.19 | [M+HCOO]- | Gal1→4Gal1→4Gal | ![]() |
17.8 | 461.04 | [M+HCOO]-- | Ara1→5Ara1→5Ara | ![]() |
19.9 | 445.15 | [M-H]- | Ara1→5Ara1→2Gal | ![]() |
21.1 | 547.15 | [M-H]- | GalA1→4GalA1→4GalA | ![]() |
25.2 | 593.19 | [M+HCOO]- | Ara1→5Ara1→5Ara1→5Ara | ![]() |
26.5 | 713.24 | [M+HCOO]- | Gal1→4Gal1→4Gal1→4Gal | ![]() |
27.3 | 799.24 | [M-]- | Gal1→4Gal(X→1Ara)1→4Gal1→4Gal | ![]() |
27.8 | 649.15 | [M-]- | Gal1→4Rha1→4GalA1→2Rha | ![]() |
30.3 | 679.21 | [M-H]- | Ara1→5Ara1→5Ara1→5Ara1→5Ara | ![]() |
31.3 | 663.18 | [M-H]- | GalA1→2Rha1→4 GalA1→2Rha | ![]() |
33.3 | [M-H]- | Gal1→4Gal1→4Gal1→4Gal1→4Gal | ![]() | |
35.1 | 723.12 | [M-H]- | GalA1→4GalA1→4GalA1→4GalA | ![]() |
36.6 | 801.27 | [M-H]- | Gal1→4Gal1→4Gal1→5Ara1→XRha | ![]() |
38.7 | 801.26 | [M-H]- | Gal1→4Gal1→4Gal1→4Gal1→5Ara | ![]() |
41.6 | 899.12 | [M-H]- | GalA1→4GalA1→4GalA1→4GalA1→4aA | ![]() |
42.1 | 857.27 | [M+HCOO]- | Ara1→5Ara1→5Ara1→5Ara1→5Ara1→5Ara | ![]() |
42.9 | 1037.34 | [M+HCOO]- | Gal1→4Gal1→4Gal1→4Gal1→4Gal1→4Gal | ![]() |
44.0 | 809.23 | [M-H]- | GalA1→2Rha1→4Rha1→4GalA1→2Rha | ![]() |
46.4 | 809.23 | [M-H]- | Rha1→4GalA1→2Rha1→4GalA1→2Rha | ![]() |
48.6 | 839.21 | [M-H]- | Rha1→4GalA1→2Rha1→4GalA1→4GalA1→4GalA | ![]() |
tR/min | m/z | Pseudomolecular Ion | Proposed structure | Graphical structure |
---|---|---|---|---|
4.0 | 389.16 | [M+HCOO]- | Gal1→4Gal | ![]() |
5.1 | 283.11 | [M-H]- | Ara1→5Ara | ![]() |
12.5 | 371.12 | [M-H]- | GalA1→4GalA | ![]() |
13.7 | 551.19 | [M+HCOO]- | Gal1→4Gal1→4Gal | ![]() |
17.6 | 415.04 | [M-H]- | Ara1→5Ara1→5Ara | ![]() |
18.9 | 517.07 | [M-H]- | GalA1→4GalA1→2Rha | ![]() |
21.0 | 547.15 | [M-H]- | GalA1→4GalA1→4GalA | ![]() |
15.1 | 547.26 | [M-H]- | Ara1→5Ara1→5Ara1→5Ara | ![]() |
26.4 | 713.21 | [M+HCOO]- | Gal1→4Gal1→4Gal1→4Gal | ![]() |
27.2 | 799.24 | [M-H]- | Gal1→4Gal(X→1Ara)1→4Gal1→4Gal | ![]() |
27.5 | 679.14 | [M-H]- | Gal1→4Rha1→4GalA1→4GalA | ![]() |
30.2 | 679.21 | [M-H]- | Ara1→5Ara1→5Ara1→5Ara1→5Ara | ![]() |
31.5 | 663.18 | [M-H]- | GalA1→2Rha1→4 GalA1→2Rha | ![]() |
33.0 | 737.25 | [M-H]- | GalA1→4GalAOMe1→4GalA1→4GalA | ![]() |
34.8 | 723.12 | [M-H]- | GalA1→4GalA1→4GalA1→4GalA | ![]() |
36.4 | 801.24 | [M-H]- | Gal1→4Gal1→4Gal1→5Ara1→4Rha | ![]() |
38.0 | 799.24 | [M-H]- | Gal1→4Gal1→4Gal1→4Gal1→5Ara | ![]() |
41.6 | 899.12 | [M-H]- | GalA1→4GalA1→4GalA1→4GalA1→4aA | ![]() |
tR/min | m/z | Pseudomolecular Ion | Proposed structure | Graphical structure |
42.6 | 1037.32 | [M+HCOO]- | Gal1→4Gal1→4Gal1→4Gal1→4Gal1→4Gal | ![]() |
43.9. | 809.26 | [M-H]- | GalA1→2Rha1→4Rha1→2GalA1→2Rha | ![]() |
46.4 | 809.23 | [M-H]- | Rha1→4GalA1→2Rha1→4GalA1→2Rha | ![]() |
48.1 | 839.21 | [M-H]- | Rha1→4GalA1→2Rha1→4GalA1→4GalA1→4GalA | ![]() |
Table 3 Signal attribution of SBP3
tR/min | m/z | Pseudomolecular Ion | Proposed structure | Graphical structure |
---|---|---|---|---|
4.0 | 389.16 | [M+HCOO]- | Gal1→4Gal | ![]() |
5.1 | 283.11 | [M-H]- | Ara1→5Ara | ![]() |
12.5 | 371.12 | [M-H]- | GalA1→4GalA | ![]() |
13.7 | 551.19 | [M+HCOO]- | Gal1→4Gal1→4Gal | ![]() |
17.6 | 415.04 | [M-H]- | Ara1→5Ara1→5Ara | ![]() |
18.9 | 517.07 | [M-H]- | GalA1→4GalA1→2Rha | ![]() |
21.0 | 547.15 | [M-H]- | GalA1→4GalA1→4GalA | ![]() |
15.1 | 547.26 | [M-H]- | Ara1→5Ara1→5Ara1→5Ara | ![]() |
26.4 | 713.21 | [M+HCOO]- | Gal1→4Gal1→4Gal1→4Gal | ![]() |
27.2 | 799.24 | [M-H]- | Gal1→4Gal(X→1Ara)1→4Gal1→4Gal | ![]() |
27.5 | 679.14 | [M-H]- | Gal1→4Rha1→4GalA1→4GalA | ![]() |
30.2 | 679.21 | [M-H]- | Ara1→5Ara1→5Ara1→5Ara1→5Ara | ![]() |
31.5 | 663.18 | [M-H]- | GalA1→2Rha1→4 GalA1→2Rha | ![]() |
33.0 | 737.25 | [M-H]- | GalA1→4GalAOMe1→4GalA1→4GalA | ![]() |
34.8 | 723.12 | [M-H]- | GalA1→4GalA1→4GalA1→4GalA | ![]() |
36.4 | 801.24 | [M-H]- | Gal1→4Gal1→4Gal1→5Ara1→4Rha | ![]() |
38.0 | 799.24 | [M-H]- | Gal1→4Gal1→4Gal1→4Gal1→5Ara | ![]() |
41.6 | 899.12 | [M-H]- | GalA1→4GalA1→4GalA1→4GalA1→4aA | ![]() |
tR/min | m/z | Pseudomolecular Ion | Proposed structure | Graphical structure |
42.6 | 1037.32 | [M+HCOO]- | Gal1→4Gal1→4Gal1→4Gal1→4Gal1→4Gal | ![]() |
43.9. | 809.26 | [M-H]- | GalA1→2Rha1→4Rha1→2GalA1→2Rha | ![]() |
46.4 | 809.23 | [M-H]- | Rha1→4GalA1→2Rha1→4GalA1→2Rha | ![]() |
48.1 | 839.21 | [M-H]- | Rha1→4GalA1→2Rha1→4GalA1→4GalA1→4GalA | ![]() |
1 | Mao G. Z., Wu D. M., Wei C. Y., Tao W. Y., Ye X. Q., Linhardt R. J., Orfila C., Chen S. G., Trends in Food Science & Technology, 2019, 94, 65—78 |
2 | Somerville C., Bauer S., Brininstool G., Facette M., Hamann T., Milne J., Osborne E., Paredez A., Persson S., Raab T., Vorwerk S., Youngs H., Science, 2004, 306(5705), 2206—2211 |
3 | Atmodjo M. A., Hao Z. Y., Mohnen D. Annu. Rev. Plant Biol., 2013, 64, 747—779 |
4 | Blanco P. F., Steigerwald H., Schulke S., Vieths S., Toda M., Scheurer S., Curr. Allergy Asthma Rep., 2021, 21(10), 43 |
5 | Gao X. G., Zhi Y., Sun L., Peng X. X., Zhang T., Xue H. T., Tai G. H., Zhou Y. F., J. Biol. Chem., 2013, 288(47), 33953-33965 |
6 | Mohnen D., Current Opinion in Plant Biology, 2008, 11(3), 266—277 |
7 | Larsen N., de Souza C. B., Krych L., Cahu T. B., Wiese M., Kot W., Hansen K. M., Blennow A., Venema K., Jespersen L., Frontiers in Microbiology, 2019, 10, 223 |
8 | Zhu K., Mao G. Z., Wu D. M., Yu C. X., Cheng H., Xiao H., Ye X. Q., Linhardt R. J., Orfila C., Chen S. G., Journal of Agricultural and Food Chemistry, 2020, 68(32), 8688—8701 |
9 | Wu D. M., Chen S. G., Ye X. Q., Ahmadi S., Hu W. W., Yu C. X., Zhu K., Cheng H., Linhardt R.J., He Q. J., Food Hydrocolloids, 2022, 107209 |
10 | Wu D. M., Zheng X. L., Hu W. W., Zhu K., Yu C. X., He Q. J., Linhardt R. J., Ye X. Q., Chen S. G., Bioactive Carbohydrates and Dietary Fibre, 2021, 26, 100283 |
11 | Mao G. Z., Li S., Orfila C., Shen X. M., Zhou S. Y., Linhardt R. J., Ye X. Q., Chen S. G., Food & Function, 2019, 10(12), 7828—7843 |
12 | Wei Z. H., Zhu P., Huang Q. R., Food Hydrocolloids, 2019, 87, 448—458 |
13 | Gromer A., Penfold R., Gunning A. P., Kirby A. R., Morris V. J., Soft Matter, 2010, 6(16), 3957—3969 |
14 | Levigne S.V., Ralet M. C. J., Quéméner B. C., Pollet B. N. L., Lapierre C., Thibault J. F. J., Plant Physiol., 2004, 134(3), 1173—1180 |
15 | Funami T., Nakauma M., Ishihara S., Tanaka R., Inoue T., Phillips G. O., Food Hydrocolloids, 2011, 25(2), 221—229 |
16 | Zhu K., Ye X. Q., Liu D. H., Chen S. G., Future Food Science, 2021, 1(1), 23—32 |
朱凯, 叶兴乾, 刘东红, 陈士国. 未来食品科学, 2021, 1(1), 23—32 | |
17 | Wang J. Q., Zhao J., Nie S. P., Xie M. Y., Li S. P., TrAC Trends in Analytical Chemistry, 2021, 144, 116436 |
18 | Liang Q. T., Zou Q., Lin J. H., Liu S. T., Wei Z., Chem. J. Chinese Universities, 2021, 42(6), 1776—1784 |
梁群焘, 邹强, 林江慧, 刘树滔, 魏峥. 高等学校化学学报, 2021, 42(6), 1776—1784 | |
19 | Li C., Wang C. J,. Jin W. J., Han J. L., Yang M. F., Gao X., Huang L. J., Wang Z. F., Chem. J. Chinese Universities, 2019, 40(1), 69—75 |
李成, 王承健, 晋万军, 韩健利, 杨梅芳, 郜茜, 黄琳娟, 王仲孚. 高等学校化学学报, 2019, 40(1), 69—75 | |
20 | Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F., Analytical Chemistry, 1956, 28(3), 350—356 |
21 | Meseguer I., Aguilar V., González M. A. J., Martı́Nez C., Journal of Food Composition and Analysis, 1998, 11(4), 285—291 |
22 | de Arcuri B. E. F., de Recondo M. E. F., Recondo E. F., Carbohydrate Research, 1980, 85(2), 165—176 |
23 | Levigne S., Thomas M., Ralet M. C., Quemener B., Thibault J. F., Food Hydrocolloids, 2002, 16(6), 547—550 |
24 | Logtenberg M. J., Donners K. M. H., Vink J. C. M., van Leeuwen S. S., de Waard P., de Vos P., Schols H. A., Journal of Agricultural and Food Chemistry, 2020, 68(29), 7800—7808 |
25 | Sun R. C.,Hughes S., Carbohydrate Polymers, 1999, 38(3), 273—281 |
26 | Yapo B.M., Robert C., Etienne I., Wathelet B., Paquot M., Food Chemistry, 2007, 100(4), 1356—1364 |
27 | Buchholt H. C., Christensen T. M. I. E., Fallesen B., Ralet M. C., Thibault J. F., Carbohydrate Polymers, 2004, 58(2), 149—161 |
28 | Wang X., Chen Q. R., Lu X., Food Hydrocolloids, 2014, 38, 129—137 |
29 | Guillotin S. E., Van Loey A., Boulenguer P., Schols H. A.,Voragen A.G. J., Food Hydrocolloids, 2007, 21(1), 85—91 |
30 | Ognyanov M., Remoroza C., Schols H. A., Georgiev Y. N., Petkova N. T., Krystyjan M., Carbohydrate Polymers, 2020, 229, 115549 |
31 | Westphal Y., Schols H. A., Voragen A. G. J., Gruppen H., Journal of Chromatography A, 2010, 1217(5), 689—695 |
32 | Huang C. C., Yan J. Y., Zhan L. P., Zhao M., Zhou J. Y., Gao H. Y, Xie W. C., Li Y., Chai W. G., Anal. Chim. Acta, 2019, 1071, 25—35 |
33 | Lee S. J., In G., Lee J. W., Shin K. S., International Journal of Biological Macromolecules, 2021, 186, 13—22 |
34 | Palma A. S., Liu Y., Zhang H. T., Zhang Y. B., McCleary B. V., Yu G. L., Huang Q. L., Guidolin L. S., Ciocchini A. E., Torosantucci A., Wang D. N., Carvalho A. L., Fontes C. M. G. A., Mulloy B., Childs R. A., Feizi T., Chai W. G., Molecular & Cellular Proteomics, 2015, 14(4), 974—988 |
35 | XIE B. Y., Yi L., Zhu Y. T., Chang X. M., Hao J., Pang L., Ouyang Y. L., Yuan S., Zhang Z. Q., Carbohydrate Polymers, 2021, 251, 117080 |
[1] | HU Haocheng, LI Wenli, ZHANG Jianing, LIU Yubo. Extraction, Structure Characterization and Biological Activities of Oligosaccharides from Auricularia heimuer [J]. Chem. J. Chinese Universities, 2021, 42(8): 2465. |
[2] | JIN Xin,JI Guoli,ZHAO Xiaoliang,LI Guoyun,YU Guangli. Sulfated Arabinose from Codium fragile: Preparation and Extensive Structural Characterization† [J]. Chem. J. Chinese Universities, 2019, 40(4): 733. |
[3] | YANG Mingming,NAN Lijing,JIN Wanjun,WANG Chengjian,HUANG Linjuan,ZHANG Ying,WANG Zhongfu. Quali-quantitative Profiling of Mucin-type O-Glycans in Normal and Tumor Cell Lines Based on Oligosaccharide Metabolic Engineering Combined with Mass Spectrometry† [J]. Chem. J. Chinese Universities, 2018, 39(9): 1904. |
[4] | LANG Yinzhi, LIU Shilong, WANG Chen, ZHANG Xiao, LÜ Youjing, CAI Chao, LI Guoyun, YU Guangli. Separation and Structural Sequence Analysis of Sialylated HMOs via Tandem Mass Spectrometry† [J]. Chem. J. Chinese Universities, 2018, 39(4): 645. |
[5] | GENG Lihua, JIN Weihua, WANG Jing, ZHANG Quanbin. Fucoidan Degradation and Preparation of Fuco-oligosaccharides from Saccharina japonica† [J]. Chem. J. Chinese Universities, 2017, 38(12): 2193. |
[6] | ZHANG Xiao, SHAN Xindi, ZHAO Xiaoliang, LI Guoyun, WANG Xiaojiang, CAI Chao, HAO Jiejie, YU Guangli. Preparation, Characterization and Immunological Activity Evaluation of Low Anticoagulant Heparin Oligosaccharides† [J]. Chem. J. Chinese Universities, 2016, 37(7): 1335. |
[7] | ZHI Zijian, ZOU Mingming, LI Shan, CHEN Jianle, YE Xingqian, CHEN Shiguo. Rheological and Structural Characterization of Pectin Polysaccharides from Citrus Pulp† [J]. Chem. J. Chinese Universities, 2016, 37(6): 1175. |
[8] | ZHOU Wenjun, ZHOU Yu, ZHANG Xiazhong, ZENG Bin. Preparation and Suzuki Reaction Performance of Pectin-supported Palladium Catalyst† [J]. Chem. J. Chinese Universities, 2016, 37(4): 669. |
[9] | YANG Zechuan, LI Fan, HUANG Qingrong, ZHANG Guo, SHI Tongfei. Synthesis and Properties of the Amino Acid Functionalized Curcumin/His-Pectin Colloidal Particles† [J]. Chem. J. Chinese Universities, 2016, 37(2): 381. |
[10] | LIU Shilong, LANG Yinzhi, ZHU He, YAN Lina, LÜ Youjing, ZHAO Xiaoliang, CAI Chao, YU Guangli. Isolation and Structural Identification of Neutral Human Milk Oligosaccharides† [J]. Chem. J. Chinese Universities, 2015, 36(6): 1087. |
[11] | LI Chunyi, HUANG Zhuolie, WANG Chunxiao. Effects of Chemical Modification with Chitooligosaccharides on Catalytic Activity and Enzymological Properties of Laccase from Trametes versicolor† [J]. Chem. J. Chinese Universities, 2015, 36(4): 704. |
[12] | CHEN Huanhuan, ZHAO Xia, LUAN Xiaohong, YU Guangli. Application of Electrospray Tandem Mass Spectrometry in Sequence Analysis of Oligosaccharides† [J]. Chem. J. Chinese Universities, 2015, 36(1): 1. |
[13] | ZHANG Hongtao, ZHU Li, ZHAN Xiaobei. Assignment of Removing Fructose in Reducing Terminal of Nostoc Oligosaccharides Based on ESI-CID-MS/MS and Preparation of Full Series of α-1,2-Gluco-oligosaccharide† [J]. Chem. J. Chinese Universities, 2014, 35(12): 2547. |
[14] | ZHANG Hongtao, ZHU Li, ZHANG Shuang, ZHAN Xiaobei. Mechanism of Lentinan Hydrolysis Based on ESI-CID-MS/MS and Preparation of Full Series of Oligosaccharides† [J]. Chem. J. Chinese Universities, 2014, 35(11): 2329. |
[15] | WANG Pei-Pei, LV You-Jing, CAO Huan, ZHAO Xiao-Liang, LI Guang-Sheng, WU Jian-Dong, YU Guang-Li. Preparation of Hybrid Fucoidan-derived Oligosaccharides and Their Structural Analysis by Negative-ion Electrospray Tandem Mass Spectrometry [J]. Chem. J. Chinese Universities, 2012, 33(08): 1722. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||