Chem. J. Chinese Universities ›› 2019, Vol. 40 ›› Issue (1): 153.doi: 10.7503/cjcu20180383
• Polymer Chemistry • Previous Articles Next Articles
ZHANG Chunyan1,2, LUO Jianxin2,*(), LI Wenjun2, OU Lijuan2, YU Guipeng1, PAN Chunyue1,*(
)
Received:
2018-05-25
Online:
2019-01-10
Published:
2018-12-04
Contact:
LUO Jianxin,PAN Chunyue
E-mail:luojianxin392@163.com;panchunyue@csu.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHANG Chunyan,LUO Jianxin,LI Wenjun,OU Lijuan,YU Guipeng,PAN Chunyue. Preparation and Sensing Properties of Covalent-linked Europium Complex Monodisperse Polystyrene Microspheres†[J]. Chem. J. Chinese Universities, 2019, 40(1): 153.
Microsphere | Mass fraction of Eu-complex(%) | Stability | Yeild(%) | dd/nm | PDId | ζd/mV | ||
---|---|---|---|---|---|---|---|---|
Theoreticala | Actualb | |||||||
n-PSEu-0 | 0 | 0 | 37 | Stable | 91 | 208 | 0.055 | -26.9 |
n-PSEu-1 | 0.25 | 0.24 | 35 | Stable | 86 | 287 | 0.057 | -26.5 |
n-PSEu-2 | 0.63 | 0.60 | 33 | Stable | 84 | 342 | 0.064 | -25.8 |
n-PSEu-3 | 1.25 | 1.19 | 32 | Stable | 81 | 384 | 0.069 | -25.7 |
n-PSEu-4 | 2.50 | 2.38 | 31 | Stable | 78 | 451 | 0.081 | -23.9 |
n-PSEu-5 | 3.75 | 3.59 | 24 | Unstable | 69 | 526 | 0.232 | -17.6 |
Table 1 Composition, yield, stability and particle size of the Eu-containing polystyrene microspheres
Microsphere | Mass fraction of Eu-complex(%) | Stability | Yeild(%) | dd/nm | PDId | ζd/mV | ||
---|---|---|---|---|---|---|---|---|
Theoreticala | Actualb | |||||||
n-PSEu-0 | 0 | 0 | 37 | Stable | 91 | 208 | 0.055 | -26.9 |
n-PSEu-1 | 0.25 | 0.24 | 35 | Stable | 86 | 287 | 0.057 | -26.5 |
n-PSEu-2 | 0.63 | 0.60 | 33 | Stable | 84 | 342 | 0.064 | -25.8 |
n-PSEu-3 | 1.25 | 1.19 | 32 | Stable | 81 | 384 | 0.069 | -25.7 |
n-PSEu-4 | 2.50 | 2.38 | 31 | Stable | 78 | 451 | 0.081 | -23.9 |
n-PSEu-5 | 3.75 | 3.59 | 24 | Unstable | 69 | 526 | 0.232 | -17.6 |
Fig.2 13C CP/MAS NMR spectra(A), FTIR spectra(B), XPS scan survey(C), Eu3d(D) and N1s(E) XPS spectra of the Eu-containing polystyrene microspheres Inset: chemical structural formula of the Eu-containing polystyrene microspheres. a. n-PSEu-0; b. n-PSEu-4; c. Eu(AA)3Phen.
Microsphere | Id/a.u. | 10-3 | LODf(μmol·L-1) | |||
---|---|---|---|---|---|---|
n-PSEu-0 | 103 | 351 | 446 | —— | —— | —— |
n-PSEu-1 | 106 | 360 | 442 | 14 | 5.93 | 5.1 |
n-PSEu-2 | 110 | 352 | 439 | 45 | 6.21 | 3.9 |
n-PSEu-3 | 114 | 351 | 436 | 85 | 7.45 | 3.2 |
n-PSEu-4 | 117 | 333 | 424 | 115 | 8.37 | 2.6 |
n-PSEu-5 | —— | 249 | 416 | 119 | 8.71 | 2.7 |
Table 2 Thermal, luminescence and sensing properties of the Eu-containing polystyrene microspheres
Microsphere | Id/a.u. | 10-3 | LODf(μmol·L-1) | |||
---|---|---|---|---|---|---|
n-PSEu-0 | 103 | 351 | 446 | —— | —— | —— |
n-PSEu-1 | 106 | 360 | 442 | 14 | 5.93 | 5.1 |
n-PSEu-2 | 110 | 352 | 439 | 45 | 6.21 | 3.9 |
n-PSEu-3 | 114 | 351 | 436 | 85 | 7.45 | 3.2 |
n-PSEu-4 | 117 | 333 | 424 | 115 | 8.37 | 2.6 |
n-PSEu-5 | —— | 249 | 416 | 119 | 8.71 | 2.7 |
Fig.3 PL excitation(A) and emission(B) spectra of the water-dispersed Eu-containing polystyrene microspheres λem=616 nm; λex=300 nm. Inset of(B): the fluorescence photographs of the water-dispersed Eu-containing polystyrene microspheres(0.5 mg/mL) under UV-light irradiation. (A) a. n-PSEu-0; b. n-PSEu-1; c. n-PSEu-2; d. n-PSEu-3; e. n-PSEu-4; f. n-PSEu-5. (B) a. n-PSEu-1; b. n-PSEu-2; c. n-PSEu-3; d. n-PSEu-4; e. n-PSEu-5.
Fig.4 Fluorescence response profiles of n-PSEu-4 in aqueous solutions(0.5 mg/mL) upon addition of different metal ions(A), ferric salts(B) and the mixture of Fe3+ and different other metal ions(C)All of the added ion concentrations are 1500 μmol/L. (A)a. K(Ⅰ); b. Ca(Ⅱ); c. Mg(Ⅱ); d. Fe(Ⅲ); e. Co(Ⅱ); f. Ni(Ⅱ); g. Cu(Ⅱ); h. Sn(Ⅱ); i. Hg(Ⅱ); j. Pb(Ⅱ); k. Mn(Ⅱ); l. Ag(Ⅰ). (B) a. Cl-; b. SO42-; c. NO3-; d. CH3COO-. (C) a. None; b. K(Ⅰ); c. Ca(Ⅱ); d. Mg(Ⅱ); e. Co(Ⅱ); f. Ni(Ⅱ); g. Cu(Ⅱ); h. Sn(Ⅱ); i. Hg(Ⅱ); j. Pb(Ⅱ); k. Mn(Ⅱ); l. Ag(Ⅰ).
Fig.5 Fluorescence response of n-PSEu-4 in aqueous solutions(0.5 mg/mL) upon addition of Fe3+Inset of the graph illustrates Stern-Volmer graph of n-PSEu-4.
[1] | Wolfbeis O. S., Chem. Soc. Rev., 2015, 44, 4743—4768 |
[2] | Wang X.H., Chang H. J., Xie J., Zhao B. Z., Liu B. T., Xu S. L., Pei W. B., Ren N., Huang L., Huang W.,Coord. Chem. Rev., 2014, (273/#274), 201—212 |
[3] | Bünzli J.C. G.,Coord. Chem. Rev., 2015, (293/#294), 19—47 |
[4] | Yan C. H., Zhang C., Li Y., Zhang M., Polym. Mater. Sci. Eng.,2016, 32(1), 13—18 |
(严长浩, 张超, 李云, 张明. 高分子材料科学与工程, 2016, 32(1), 13—18) | |
[5] | Zhou Y.J., Zhu H. E., Zhang J., Yi C. F., Xu Z. S.,Acta Polym. Sin., 2012, (9), 923—928 |
(周英杰, 朱海娥, 张俊, 易昌凤, 徐祖顺. 高分子学报, 2012, (9), 923—928) | |
[6] | Zhu H. E., Shang Y. L., Wang W. H., Zhou Y. J., Li P. H., Yan K., Wu S. L., Yeung K. W. K., Xu Z. S., Xu H. B., Chu P. K., Small,2013, 9(17), 2991—3000 |
[7] | Zhu H. E., Tao J., Wang W. H., Zhou Y. J., Li P. H., Li Z., Yan K., Wu S. L., Yeung K. W. K., Xu Z. S., Xu H. B., Chu P. K., Biomaterials,2013, 34, 2296—2306 |
[8] | Liu R. Q., Liang S., Jiang C., Xu Z. S., Xu H. B., Chem. J. Chinese Universities,2016, 37(1), 155—160 |
(刘瑞清, 梁爽, 江存, 徐祖顺, 徐海波. 高等学校化学学报, 2016, 37(1), 155—160) | |
[9] | Beutler E., Science, 2004, 306, 2051—2053 |
[10] | Kaplan C. D., Kaplan J., Chem. Rev.,2009, 109, 4536—4552 |
[11] | Dornelles A. S., Garcia V. A., Lima M. N. M. D., Vedana G., Alcalde L. A., Bogo M. R., Schrcder K N., Neurochem. Res.,2010, 35, 564—571 |
[12] | Gaeta A., Hider R. C., Br. J. Pharmacol.,2009, 146, 1041—1059 |
[13] | Zhan Y., Liu Y. L., Liu Q. Q., Liu Z. M., Yang H. Y., Lei B. F., Zhuang J. L., Hu C. F., Sens. Actuators B,2018, 255, 290—298 |
[14] | Baral A., Basu K., Roy S., Banerjee A., ACS Sustainable Chem. Eng.,2017, 5, 1628—1637 |
[15] | Xiang Z. H., Fang C. Q., Leng S. H., Cao D. P., J. Mater. Chem. A,2014, 2, 7662—7665 |
[16] | Song Y., Fan R. Q., Du X., Xing K., Dong Y. W., Wang P., Yang Y. L., RSC Adv.,2016, 6, 110182—110189 |
[17] | Li R., Qu X. L., Zhang Y. H., Han H. L., Li X., Cryst. Eng. Comm., 2016, 18, 5890—5900 |
[18] | Zhan Y., Zu H. R., Huang D., Liu Y. L., Hu C. F., Chem. J. Chinese Universities,2017, 38(9), 1556—1562 |
(战岩, 俎鸿儒, 黄棣, 刘应亮, 胡超凡. 高等学校化学学报, 2017, 38(9), 1556—1562) | |
[19] | Zhang C. Y., Luo J. X., Ou L. J., Lun Y. H., Cai S. T., Hu B. N., Yu G. P., Pan C. Y., Chem. Eur. J.,2018, 24, 3030—3037 |
[20] | Liang Y., Abdelrahman A. I., Baranov V., Winnik M. A., Polymer,2011, 52, 5040—5052 |
[1] | LI Boxin, YANG Junge, YIN Dezhong, GAO Chengqian, ZHANG Qiuyu. Preparation of Large-sized Microencapsulated Phase Change Materials Through Pickering Emulsion Stabilized by Monodisperse Polymer Microspheres [J]. Chem. J. Chinese Universities, 2020, 41(9): 2085. |
[2] | A Li, WANG Yong. Fluorescent Peptide Sensor for Detection of Copper Ions [J]. Chem. J. Chinese Universities, 2020, 41(12): 2736. |
[3] | ZHOU Sihui, LI Qiong, ZHANG Ting, PANG Daiwen, TANG Hongwu. Luminescent Nanoswitch Based on Carbon Dots for Sensitive Detection of Cu(Ⅱ) Ions and Pyrophosphates [J]. Chem. J. Chinese Universities, 2019, 40(8): 1593. |
[4] | KANG Changyong,DING Xiaoli,ZHAO Hongyong,WANG Xinlan,ZHANG Yuzhong,WANG Lina. Construction of Nanocavity in Membranes Based on Hollow Polymer Microspheres and Effects on Gas Permeation Performance† [J]. Chem. J. Chinese Universities, 2018, 39(12): 2820. |
[5] | LI Heng,WANG Shaoyun,FANG Jiaxuan,ZHAO Lan,JIN Haibo,HE Guangxiang,GUO Xiaoyan,GU Qingyang,HAO Siwen,RE Ziya,ZHI Weijie,YU Hongbin,ZHANG Rongyue. Effect of Pore Structure on Protein Capacity in Macroporous Polymer Chromatographic Supports [J]. Chem. J. Chinese Universities, 2018, 39(12): 2673. |
[6] | ZHAN Yan, ZU Hongru, HUANG Di, LIU Yingliang, HU Chaofan. Synthesis of Fluorescent Graphitic Carbon Nitride Quantum Dots by Solvothermal Ions Intercalation Method for Fe(Ⅲ) Detection† [J]. Chem. J. Chinese Universities, 2017, 38(9): 1556. |
[7] | CHEN Tianxia, ZHANG Zhengtao, WANG Yong, NI Yongnian. Cytidine-protected Copper Nanoclusters as a Novel Fluorescent Probe for the Detection of Dichromate Anion† [J]. Chem. J. Chinese Universities, 2017, 38(10): 1737. |
[8] | ZOU Tao, YI Qingfeng, ZHANG Yuanyuan, DENG Zhongliang, LEI Ming, ZHOU Xiulin. A New Formic Acid/Iron Ion Fuel Cell† [J]. Chem. J. Chinese Universities, 2017, 38(1): 101. |
[9] | YU Tian, XU Chengnan, YU Yuan, ZHAO Feifei, PAN Yiting, LIU Cai, HUANG Yongdong, ZHANG Rongyue. Preparation of Gigaporous Microspheres Through Atom Transfer Radical Polymerization† [J]. Chem. J. Chinese Universities, 2016, 37(9): 1740. |
[10] | ZHUANG Qianfen, CAO Wei, WU Qi, NI Yongnian. Fluorescence Detection of Au(Ⅲ) Based on Carbon Nitride Nanoparticles† [J]. Chem. J. Chinese Universities, 2016, 37(9): 1611. |
[11] | XU Tiantian, XU Kun, ZHOU Chao, TAN Ying, LU Cuige, WANG Pixin. Preparation and Performance of Composite Hydrogel Crosslinked by Surface Grafting Method of Thermo-sensitive Microsphere† [J]. Chem. J. Chinese Universities, 2016, 37(5): 996. |
[12] | FA Huan-Bao, ZHANG Jin, QI Hui, YIN Wei, ZHANG Hai-Feng, HOU Chang-Jun, HUO Dan-Qun, LU Wei-Jian. Synthesis and Properties of Molecularly Imprinted Polymeric Microspheres of Metalloporphyrins with Dimethyl Methylphosphonate as Template Molecule [J]. Chem. J. Chinese Universities, 2013, 34(5): 1160. |
[13] | YAO Jin-Shui*, ZHANG Xian, WEI Ming-Xing. Synthesis and Chiral Recognation of Hollow Chiral Polymer Microspheres with Amide Side Group [J]. Chem. J. Chinese Universities, 2007, 28(8): 1606. |
[14] | CHEN Fen-Qiang, LIU Shou-Xin*, FANG Yu, WANG Yi-Juan, ZHANG Zhao-Yang, JIANG Yu. Preparation of Molecularly Imprinted Polymer Microspheres and Their Recognition for Chenodeoxycholic Acid [J]. Chem. J. Chinese Universities, 2007, 28(11): 2195. |
[15] | BAO De-Cai, ZHANG Qiong-Gang, LIU Xiu-Dong, MA Xiao-Jun, YUAN Quan. Preparation of Monodisperse PS Microspheres by Using Membrane Emulsification-drying Method in Liquid [J]. Chem. J. Chinese Universities, 2004, 25(7): 1328. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||