Chem. J. Chinese Universities ›› 2017, Vol. 38 ›› Issue (12): 2135.doi: 10.7503/cjcu20170620
• Articles: Inorganic Chemistry • Previous Articles Next Articles
SU Yue1,2, LEI Pengpeng1,2, FENG Jing1,*(), ZHANG Hongjie1,*(
)
Received:
2017-09-15
Online:
2017-12-10
Published:
2017-11-22
Contact:
FENG Jing,ZHANG Hongjie
E-mail:fengj@ciac.ac.cn;hongjie@ciac.ac.cn
Supported by:
TrendMD:
SU Yue, LEI Pengpeng, FENG Jing, ZHANG Hongjie. Tunable Upconversion Luminescence of Mn2+ Doping NaBiF4∶Yb/Er Particles†[J]. Chem. J. Chinese Universities, 2017, 38(12): 2135.
Fig.5 UCL spectra of NaBiF4∶Yb/Er/Mn [x(Mn)=0, 6%, 12%, 18%] under 980 nm excitation(A), Rr/g(a) and calculated overall UCL intensity(b) with increasing Mn2+ concentration(B) and the CIE chromaticity diagram of NaBiF4∶Yb/Er/Mn[x(Mn)=0, 6%, 12%, 18%)](C) (A) The power density is 14.15 W/cm2.
Fig.5 lg-lg plot of the UCL intensities of NaBiF4∶Yb/Er/Mn[x(Mn)=18%] as a function of 980 nm pump power a. 2H11/2, 4S3/2→4I15/2, slope=2.14; b. 4F9/2→4I15/2, slope=2.39.
Fig.7 Energy level diagram and upconversion mechanism of NaBiF4∶Yb/Er/Mn under 980 nm excitation The full arrows pointing upwards represent energy absorption, full arrows pointing downwards represent visible emission, dashed arrows represent the nonradiative relaxation process, and the curly dashed arrows represent energy transfer.
Fig.9 Temperature-dependent intensity of green emission a(2H11/2-4I15/2, a), green emission b(4S3/2-4I15/2, b)(A), temperature-dependent intensity of red emission(4F9/2 - 4I15/2)(B) and intensity ratio of red to green emission(a) and green emission a to green emission b(b) recorded from 25 K to 500 K(C)
[1] | Auzel F., C. R. Acad. Sci., 1996, 262, 1016—1019 |
[2] | Auzel F., Chem. Rev., 2004, 104, 139—174 |
[3] | Suyver J. F., Grimm J., van veen M. K., Biner D., Krämer K. W., Güdel H. U., J. Lumin., 2006, 117, 1—12 |
[4] | Wang F., Han Y., Lim C. S., Lu Y., Wang J., Xu J., Chen H., Zhang C., Hong M., Liu X., Nature,2010, 463, 1061—1065 |
[5] | Wang F., Liu X., J. Am. Chem. Soc., 2008, 130, 5642—5643 |
[6] | Li Z., Zhang Y., Jiang S., Adv. Mater., 2008, 20, 4765—4769 |
[7] | Chatterjee D. K., Rufaihah A. J., Zhang Y., Biomaterials,2008, 29, 937—943 |
[8] | Zhou J., Liu Z., Li F., Chem. Soc. Rev., 2012, 41, 1323—1349 |
[9] | Gai S., Li C., Yang P., Lin J., Chem. Rev., 2014, 114, 2343—2389 |
[10] | Lei L., Chen D., Huang P., Xu J., Zhang R., Wang Y., Nanoscale,2013, 5, 11298—11305 |
[11] | Wang F., Deng R., Wang J., Wang Q., Han Y., Zhu H., Chen X., Liu X., Nat. Mater., 2011, 10, 968—973 |
[12] | Shen J., Sun L. D., Yan C. H., Dalton Trans., 2008, 42, 5687—5697 |
[13] | Su Y., Liu X., Lei P., Xu X., Dong L., Guo X., Yan X., Wang P., Song S., Feng J., Zhang H., Dalton Trans., 2016, 45, 11129—11136 |
[14] | Qian H. S., Zhang Y., Langmuir,2008, 24, 12123—12125 |
[15] | Fischer S., Martín-Rodríguez R., Fröhlich B., Krämer K. W., Meijerink A., Goldschmidt J. C., J. Lumin., 2014, 153, 281—287 |
[16] | Amjad R. J., Sahar M. R., Ghoshal S. K., Dousti M. R., Riaz S., Samavati A. R., Jamaludin M. N. A., Naseem S., Chin. Phys. Lett., 2013, 30, 027301 |
[17] | Naduviledathu R. A., Rinkel T., Haase M., Chem. Mater., 2014, 26, 5689—5694 |
[18] | Wang J., Lu J., Hocevar S. B., Farias P. A. M., Ogorevc B., Anal. Chem., 2000, 72, 3218—3222 |
[19] | Monk K. A., Sarapa D., Mohan R. S., Synth. Commun., 2000, 30, 3167—3170 |
[20] | Niu N., He F., Gai S., Li C., Zhang X., Huang S., Yang P., J. Mater. Chem., 2012, 22, 21613—21623 |
[21] | Lei P., Zhang P., Yao S., Song S., Dong L., Xu X., Liu X., Du K., Feng J., Zhang H., Appl. Mater. Interfaces, 2016, 8, 27490—27497 |
[22] | Lei P., Zhang P., Yuan Q., Wang Z., Dong L., Song S., Xu X., Liu X., Feng J., Zhang H., Appl. Mater. Interfaces, 2015, 7, 26346—26354 |
[23] | Lei P., An R., Yao S., Wang Q., Dong L., Xu X., Du K., Feng J., Zhang H., Adv. Mater., 2017, 29, 1700505 |
[24] | Lei P., An R., Zhai X., Yao S., Dong L., Xu X., Du K., Zhang M., Feng J., Zhang H., J. Mater. Chem. C, 2017, 5, 9659—9665 |
[25] | Huang X., Jiang L., Xu Q., Li X., He A., RSC Adv., 2017, 7, 41190—41203 |
[26] | Tian G., Gu Z., Zhou L., Yin W., Liu X., Yan L., Jin S., Ren W., Xing G., Li S., Zhao Y., Adv. Mater., 2012, 24, 1226—1231 |
[27] | Zeng S., Yi Z., Lu W., Qian C., Wang H., Rao L., Zeng T., Liu H., Liu H., Fei B., Hao J., Adv. Funct. Mater., 2014, 24, 4051—4059 |
[28] | Zhang K. M., Zhao Y. P., He F. Q., Liu D. Q., Chin. J. Chem. Phys., 2007, 20, 721 |
[29] | Shannon R. D., Acta Cryst., 1976, A32, 751 |
[30] | Li X., Lu J., Peng G., Jin L., Wei S., J. Phys. Chem. Solids, 2009, 70, 609—615 |
[31] | Chen D., Yu Y., Huang F., Huang P., Yang A., Wang Y., J. Am. Chem. Soc., 2010, 132, 9976—9978 |
[32] | Wang F., Wang J., Liu X., Angew. Chem., 2010, 122, 7618—7622 |
[33] | Yu W., Xu W., Song H., Zhang S., Dalton Trans., 2014, 43, 6139—6147 |
[34] | Georgescu S., Voiculescu A. M., Matei C., Stefan A. G., Toma O., Phys. B Condens. Matter, 2013, 413, 55—58 |
[35] | Huang Z., Gao H., Mao Y., RSC Adv., 2016, 6, 83321—83327 |
[36] | Song E.H., Xiao F., Ye S., Zhang Q. Y.,INEC, 2013, 421—424 |
[37] | Wang S. F., Gu F., Lü M. K., Zhou G. J., Ai Z. P., Xu D., Yuan D. R., J. Cryst. Growth, 2003, 257, 84—88 |
[1] | ZHANG Liling, LIU Liu, ZHENG Mingqiu, FANG Wenkai, LIU Da, TANG Hongwu. Dual Signal Detection of HPV16 DNA by CRISPR/Cas12a Biosensing System Based on Upconversion Luminescent Resonance Energy Transfer [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220412. |
[2] | ZHANG Lingyu, ZHANG Jilong, QU Zexing. Dynamics Study of Intramolecular Vibrational Energy Redistribution in RDX Molecule [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220393. |
[3] | YUAN Bo, QI Chaochao, ZHANG Xiangting, LUAN Guoyan, ZOU Haifeng. Luminescence Property and LED Device Application for Color-tunable Ca2LaTaO6∶Dy3+,Sm3+ Phosphor Based on Energy Transfer [J]. Chem. J. Chinese Universities, 2021, 42(9): 2717. |
[4] | ZHU Min, ZHANG Xiao, YOU Shuli. Visible-light-promoted Dearomatization of Benzene and Derivatives† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1407. |
[5] | WANG Mengyu, CAO Simin, LI Haoyang, ZHANG Mengjie, LI Dong, ZHAO Zenan, XU Jianhua. Fluorescence Resonance Energy Transfer Between Coenzyme NADH and Tryptophan [J]. Chem. J. Chinese Universities, 2020, 41(11): 2473. |
[6] | FENG Wei,WANG Bowei,JIANG Yang,LI Longyun. Design, Preparation and Surface-enhanced Raman Scattering(SERS) Spectrum of Single Ag Nanodot† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1345. |
[7] | LIANG Donglei, SONG Qiusheng, YAO Yutian, LIU Ben. Preparation of Complex Nanogel with Up-conversion Fluorescence-responsive Performance and Its Fluorescence Energy Transfer Behavior† [J]. Chem. J. Chinese Universities, 2019, 40(3): 583. |
[8] | ZHANG Hanbing, LI Chengren, LI Shufeng, GAO Xinyu, HONG Yuanzhi, LI Zhichao, SUN Jingchang. White Light Emission Performance of Y2O3∶Eu3+,Dy3+ Nanophosphors† [J]. Chem. J. Chinese Universities, 2018, 39(2): 193. |
[9] | TANG Keyun,LI Luoyuan,FU Limin,AI Xicheng,ZHANG Jianping. Effect of Crystal Matrix on Energy Transfer Mechanism in Rare-earth Upconversion Nanomaterials† [J]. Chem. J. Chinese Universities, 2018, 39(10): 2136. |
[10] | LIU Huiqiang, PENG Chao, CHEN Ning, LIU Yangping. Novel Fluorescent/EPR Difunctional Probe for Detecting Hypochlorite† [J]. Chem. J. Chinese Universities, 2017, 38(9): 1542. |
[11] | ZHANG Chao, PAN Chengling, SHENG Shaoding. Study on the Penetrating Energy of Zigzag Single-walled Carbon Nanotubes† [J]. Chem. J. Chinese Universities, 2016, 37(6): 1108. |
[12] | CHEN Jiayi, SU Wei, WANG Enju. Highly Selective Ratiometric Fluorescent Probe for Hg2+Based on Fluorescence Resonance Energy Transfer Between 1,8-Naphthalimide and Rhodamine B† [J]. Chem. J. Chinese Universities, 2016, 37(2): 232. |
[13] | ZHANG Xiafei, CHENG Rui, SHI Zhilu, JIN Yan. Label-free Fluorescence Assay of Telomerase RNA Based on Strand Displacement Amplification† [J]. Chem. J. Chinese Universities, 2016, 37(1): 12. |
[14] | MA Lina, LIU Fuyao, GAO Jiaxue, WANG Zhenxin. Polydopamine Nanoparticle-based Fluorescence Resonance Energy Transfer Assay for microRNA Detection† [J]. Chem. J. Chinese Universities, 2015, 36(6): 1061. |
[15] | WANG Tianyang, HU Xiaoxia, SUN Haiya, GUO Jianfeng, LIU Dongzhi, LI Wei, WANG Lichang, ZHOU Xueqin. Photophysical Processes in a Novel Porphyrin-perylene Metallosupramolecule with a Long-lived Triplet State† [J]. Chem. J. Chinese Universities, 2014, 35(8): 1753. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||