Chem. J. Chinese Universities ›› 2017, Vol. 38 ›› Issue (9): 1590.doi: 10.7503/cjcu20170136
• Organic Chemistry • Previous Articles Next Articles
WANG Lei1,2, ZHENG Guojun1,*(), JI Qi2,*(
), CHEN Bo2, GONG Longlong2, GAO Congmin2, DU Zhenjian2, ZHANG Xingmin2
Received:
2017-03-07
Online:
2017-09-10
Published:
2017-07-21
Contact:
ZHENG Guojun,JI Qi
E-mail:zhenggj@mail.buct.edu.cn;qi.ji@forelandpharma.com
CLC Number:
TrendMD:
WANG Lei, ZHENG Guojun, JI Qi, CHEN Bo, GONG Longlong, GAO Congmin, DU Zhenjian, ZHANG Xingmin. Synthesis and Biological Activity of Novel PI3K/mTOR Inhibitors†[J]. Chem. J. Chinese Universities, 2017, 38(9): 1590.
Compd. | Appearance | Yield(%) | LC-MS(ESI), m/z, [M+H]+ | Compd. | Appearance | Yield(%) | LC-MS(ESI), m/z, [M+H]+ |
---|---|---|---|---|---|---|---|
5a | Yellow solid | 93.3 | 528.4 | 10b | White solid | 98.5 | 516.7 |
5b | Brown solid | 81.2 | 528.4 | 10c | White solid | 95.4 | |
6a | Brown solid | 77.4 | 11 | White solid | 71.8 | 594.7 | |
6b | Yellow solid | 93.3 | 498.4 | 12 | White solid | 37.8 | 594.7 |
7a | Brown solid | 72.3 | 524.4 | 13 | White solid | 29.7 | 608.7 |
7b | Brown solid | 44.8 | 524.4 | 14 | White solid | 21.2 | 611.3 |
8a | Yellow solid | 98.4 | | 15 | White solid | 38.3 | 611.3 |
8b | Yellow solid | 88.4 | 538.5 | 16 | Yellow solid | 21.2 | 625.3 |
8c | Yellow solid | 92.4 | 552.5 | 17 | White solid | 43.8 | 574.1 |
9a | White solid | 93.3 | 616.7 | 18 | White solid | 31.2 | 574.1 |
9b | White solid | 78.5 | 616.7 | 19 | Yellow solid | 41.0 | 588.7 |
9c | White solid | 82.4 | 630.8 | 20 | Yellow solid | 66.8 | 588.1 |
10a | White solid | 95.3 | 516.7 |
Table 1 Appearance, yield and LC-MS data of target compounds 2—20
Compd. | Appearance | Yield(%) | LC-MS(ESI), m/z, [M+H]+ | Compd. | Appearance | Yield(%) | LC-MS(ESI), m/z, [M+H]+ |
---|---|---|---|---|---|---|---|
5a | Yellow solid | 93.3 | 528.4 | 10b | White solid | 98.5 | 516.7 |
5b | Brown solid | 81.2 | 528.4 | 10c | White solid | 95.4 | |
6a | Brown solid | 77.4 | 11 | White solid | 71.8 | 594.7 | |
6b | Yellow solid | 93.3 | 498.4 | 12 | White solid | 37.8 | 594.7 |
7a | Brown solid | 72.3 | 524.4 | 13 | White solid | 29.7 | 608.7 |
7b | Brown solid | 44.8 | 524.4 | 14 | White solid | 21.2 | 611.3 |
8a | Yellow solid | 98.4 | | 15 | White solid | 38.3 | 611.3 |
8b | Yellow solid | 88.4 | 538.5 | 16 | Yellow solid | 21.2 | 625.3 |
8c | Yellow solid | 92.4 | 552.5 | 17 | White solid | 43.8 | 574.1 |
9a | White solid | 93.3 | 616.7 | 18 | White solid | 31.2 | 574.1 |
9b | White solid | 78.5 | 616.7 | 19 | Yellow solid | 41.0 | 588.7 |
9c | White solid | 82.4 | 630.8 | 20 | Yellow solid | 66.8 | 588.1 |
10a | White solid | 95.3 | 516.7 |
Compd. | 1H NMR(400 MHz), δ | |
---|---|---|
11 | 8.81(s, 1H), 8.54(s, 1H), 8.31(d, J=9.6 Hz, 1H), 8.07(s, 1H), 7.85(d, J=8.4 Hz, 1H), 7.69—7.46(m, 6H), 7.26(s, 1H), 3.97(s, 4H), 3.89(d, J=11.1 Hz, 1H), 3.70(s, 3H), 3.14—3.04(m, 1H), 2.93—2.70(m, 5H), 2.18—2.10(m, 1H), 2.05—1.96(m, 1H), 1.92—1.78(m, 1H), 1.78—1.62(m, 1H) | |
12 | 8.82(s, 1H), 8.39(s, 1H), 8.19(d, J=8.7 Hz, 1H), 8.04(s, 1H), 7.97(s, 1H), 7.86(d, J=8.8 Hz, 1H), 7.69—7.66(m, 1H), 7.59—7.52(m, 4H, Ar), 7.50(d, J=8.4 Hz, 1H), 7.21(s, 1H), 4.00(s, 5H), 3.74(s, 3H), 2.99—2.78(m, 6H), 2.15—1.94(m, 4H, —CH2—) | |
13 | 8.86(s, 1H), 8.49—8.39(m, 1H), 8.37(s, 1H), 7.99(s, 1H), 7.94—7.81(m, 1H), 7.79—7.67(m, 1H), 7.64—7.53(m, 6H), 4.31—4.28(m, 2H), 4.03(s, 5H), 2.89—2.85(m, 6H), 2.26—2.10(m, 4H, —CH2—), 2.02(s, 3H, ) | |
14 | 9.45(s, 1H), 8.65(d, J=11.9 Hz, 1H), 8.57(s, 1H), 8.47—8.40(m, 2H), 8.40—8.30(m, 1H), 8.19(s, 1H), 8.12—8.01(m, 1H), 7.86—7.65(m, 5H), 7.21—7.05(m, 1H), 3.90(d, J=17.4 Hz, 3H), 3.44—3.34(m, 1H), 3.49—3.21(m, 2H), 2.98—2.86(m, 1H), 2.18—2.06(m, 1H), 2.02—1.82(m, 3H), 1.77—1.38(m, 2H) | |
15 | 8.81(s, 1H), 8.45—8.39(m, 1H), 8.26—8.22(m, 1H), 8.19—8.13(m, 1H), 8.08(s, 1H), 7.81(d, J=8.8 Hz, 1H), 7.63(s, 1H), 7.58—7.49(m, 5H), 7.45(s, 1H), 7.24(s, 1H), 4.03(s, 3H), 3.71(s, 4H), 3.40—3.28(m, 1H), 3.14—2.93(m, 2H), 2.30—1.85(m, 5H) | |
16 | 8.89(s, 1H), 8.48—8.41(m, 1H), 8.22(d, J=8.8 Hz, 1H), 8.09(s, 1H), 8.00(s, 1H), 7.90(d, J=8.2 Hz, 1H), 7.68—7.63(m, 1H), 7.63—7.53(m, 5H), 7.52—7.49(m, 1H), 7.26(s, 1H), 5.06—4.84(m, 1H), 4.01(s, 5H), 3.19—2.99(m, 3H), 2.23—1.60(m, 6H), 1.56(t, J=7.2 Hz, 3H) | |
17 | 8.83(d, J=4.1 Hz, 1H), 8.31—8.65(m, 1H), 8.24(d, J=8.8 Hz, 1H), 8.15—8.05(m, 1H), 7.98—7.90(m, 1H), 7.90—7.80(m, 1H), 7.77—7.63(m, 1H), 7.60—7.50(m, 4H), 7.48—7.43(m, 1H), 7.23(s, 1H), 4.35—4.20(m, 2H), 3.98(s, 3H), 3.84—3.65(m, 4H), 3.64—3.58(m, 1H), 3.24—3.04(m, 1H), 3.02—2.76(m, 2H), 2.30—2.19(m, 1H), 2.13—1.80(m, 3H) | |
18 | 9.51(s, 1H), 8.93—8.80(m, 1H), 8.67—8.43(m, 3H), 8.43—8.35(m, 1H), 8.21—8.05(m, 2H), 7.82—7.63(m, 4H), 7.16(d, J=22.8 Hz, 1H), 4.62—4.47(m, 1H), 43.99(d, J=6.0 Hz, 3H), 3.95—3.78(m, 2H), 3.70(s, 3H), 3.42(d, J=11.2 Hz, 1H), 3.29—3.00(m, 2H), 2.94—2.67(m, 1H), 2.18—1.47(m, 4H) | |
19 | 8.85(s, 1H), 8.44—8.34(m, 1H), 8.24(d, J=8.8 Hz, 1H), 8.02—7.98(m, 2H), 7.81(d, J=8.8 Hz, 1H), 7.70(d, J=7.8 Hz, 1H), 7.61—7.48(m, 4H), 7.45(d, J=8.0 Hz, 1H), 7.24(s, 1H), 4.85(d, J=12.9 Hz, 1H), 4.29—4.14(m, 4H), 4.04(s, 3H), 3.73—3.68(m, 2H), 3.24—3.18(m, 1H), 3.08—2.95(m, 1H), 2.95—2.81(m, 1H), 2.09—1.71(m, 4H), 1.56(t, J=7.2 Hz, 3H) | |
20 | 9.39(s, 1H), 8.67(d, J=10.6 Hz, 1H), 8.48(d, J=10.6 Hz, 1H), 8.46—8.35(m, 1H), 8.35—8.25(m, 1H), 8.05—7.91(m, 1H), 7.88—7.48(m, 5H), 7.18(d, J=12.3 Hz, 1H), 4.70—4.41(m, 2H), 3.91(s, 3H), 3.67(s, 4H), 3.34—3.21(m, 1H), 3.21—3.16(m, 1H), 3.02—2.60(m, 3H), 2.20—1.80(m, 4H), 1.40—1.23(m, 3H) |
Table 2 1H NMR data of target compounds 11—20*
Compd. | 1H NMR(400 MHz), δ | |
---|---|---|
11 | 8.81(s, 1H), 8.54(s, 1H), 8.31(d, J=9.6 Hz, 1H), 8.07(s, 1H), 7.85(d, J=8.4 Hz, 1H), 7.69—7.46(m, 6H), 7.26(s, 1H), 3.97(s, 4H), 3.89(d, J=11.1 Hz, 1H), 3.70(s, 3H), 3.14—3.04(m, 1H), 2.93—2.70(m, 5H), 2.18—2.10(m, 1H), 2.05—1.96(m, 1H), 1.92—1.78(m, 1H), 1.78—1.62(m, 1H) | |
12 | 8.82(s, 1H), 8.39(s, 1H), 8.19(d, J=8.7 Hz, 1H), 8.04(s, 1H), 7.97(s, 1H), 7.86(d, J=8.8 Hz, 1H), 7.69—7.66(m, 1H), 7.59—7.52(m, 4H, Ar), 7.50(d, J=8.4 Hz, 1H), 7.21(s, 1H), 4.00(s, 5H), 3.74(s, 3H), 2.99—2.78(m, 6H), 2.15—1.94(m, 4H, —CH2—) | |
13 | 8.86(s, 1H), 8.49—8.39(m, 1H), 8.37(s, 1H), 7.99(s, 1H), 7.94—7.81(m, 1H), 7.79—7.67(m, 1H), 7.64—7.53(m, 6H), 4.31—4.28(m, 2H), 4.03(s, 5H), 2.89—2.85(m, 6H), 2.26—2.10(m, 4H, —CH2—), 2.02(s, 3H, ) | |
14 | 9.45(s, 1H), 8.65(d, J=11.9 Hz, 1H), 8.57(s, 1H), 8.47—8.40(m, 2H), 8.40—8.30(m, 1H), 8.19(s, 1H), 8.12—8.01(m, 1H), 7.86—7.65(m, 5H), 7.21—7.05(m, 1H), 3.90(d, J=17.4 Hz, 3H), 3.44—3.34(m, 1H), 3.49—3.21(m, 2H), 2.98—2.86(m, 1H), 2.18—2.06(m, 1H), 2.02—1.82(m, 3H), 1.77—1.38(m, 2H) | |
15 | 8.81(s, 1H), 8.45—8.39(m, 1H), 8.26—8.22(m, 1H), 8.19—8.13(m, 1H), 8.08(s, 1H), 7.81(d, J=8.8 Hz, 1H), 7.63(s, 1H), 7.58—7.49(m, 5H), 7.45(s, 1H), 7.24(s, 1H), 4.03(s, 3H), 3.71(s, 4H), 3.40—3.28(m, 1H), 3.14—2.93(m, 2H), 2.30—1.85(m, 5H) | |
16 | 8.89(s, 1H), 8.48—8.41(m, 1H), 8.22(d, J=8.8 Hz, 1H), 8.09(s, 1H), 8.00(s, 1H), 7.90(d, J=8.2 Hz, 1H), 7.68—7.63(m, 1H), 7.63—7.53(m, 5H), 7.52—7.49(m, 1H), 7.26(s, 1H), 5.06—4.84(m, 1H), 4.01(s, 5H), 3.19—2.99(m, 3H), 2.23—1.60(m, 6H), 1.56(t, J=7.2 Hz, 3H) | |
17 | 8.83(d, J=4.1 Hz, 1H), 8.31—8.65(m, 1H), 8.24(d, J=8.8 Hz, 1H), 8.15—8.05(m, 1H), 7.98—7.90(m, 1H), 7.90—7.80(m, 1H), 7.77—7.63(m, 1H), 7.60—7.50(m, 4H), 7.48—7.43(m, 1H), 7.23(s, 1H), 4.35—4.20(m, 2H), 3.98(s, 3H), 3.84—3.65(m, 4H), 3.64—3.58(m, 1H), 3.24—3.04(m, 1H), 3.02—2.76(m, 2H), 2.30—2.19(m, 1H), 2.13—1.80(m, 3H) | |
18 | 9.51(s, 1H), 8.93—8.80(m, 1H), 8.67—8.43(m, 3H), 8.43—8.35(m, 1H), 8.21—8.05(m, 2H), 7.82—7.63(m, 4H), 7.16(d, J=22.8 Hz, 1H), 4.62—4.47(m, 1H), 43.99(d, J=6.0 Hz, 3H), 3.95—3.78(m, 2H), 3.70(s, 3H), 3.42(d, J=11.2 Hz, 1H), 3.29—3.00(m, 2H), 2.94—2.67(m, 1H), 2.18—1.47(m, 4H) | |
19 | 8.85(s, 1H), 8.44—8.34(m, 1H), 8.24(d, J=8.8 Hz, 1H), 8.02—7.98(m, 2H), 7.81(d, J=8.8 Hz, 1H), 7.70(d, J=7.8 Hz, 1H), 7.61—7.48(m, 4H), 7.45(d, J=8.0 Hz, 1H), 7.24(s, 1H), 4.85(d, J=12.9 Hz, 1H), 4.29—4.14(m, 4H), 4.04(s, 3H), 3.73—3.68(m, 2H), 3.24—3.18(m, 1H), 3.08—2.95(m, 1H), 2.95—2.81(m, 1H), 2.09—1.71(m, 4H), 1.56(t, J=7.2 Hz, 3H) | |
20 | 9.39(s, 1H), 8.67(d, J=10.6 Hz, 1H), 8.48(d, J=10.6 Hz, 1H), 8.46—8.35(m, 1H), 8.35—8.25(m, 1H), 8.05—7.91(m, 1H), 7.88—7.48(m, 5H), 7.18(d, J=12.3 Hz, 1H), 4.70—4.41(m, 2H), 3.91(s, 3H), 3.67(s, 4H), 3.34—3.21(m, 1H), 3.21—3.16(m, 1H), 3.02—2.60(m, 3H), 2.20—1.80(m, 4H), 1.40—1.23(m, 3H) |
Compd. | IC50/(nmol·L-1) | Compd. | IC50/(nmol·L-1) | ||||
---|---|---|---|---|---|---|---|
MV4-11 | PC-3 | BT-474 | MV4-11 | PC-3 | BT-474 | ||
11 | 22.5 | 15.41 | 40.9 | 16 | >1000 | >1000 | >1000 |
12 | 225 | 30.2 | 171 | 17 | 112.3 | 67.95 | 141.2 |
13 | >1000 | >1000 | >1000 | 18 | 248 | 73.59 | 142 |
14 | 70.8 | 83.95 | 349 | 19 | 357 | 477 | 489 |
15 | 132.9 | 127.8 | 422 | 20 | >1000 | 107.2 | 115.5 |
NVP-BEZ235 | 35.1 | 14.36 | 35.6 |
Table 3 Inhibition of cell growth in vitro
Compd. | IC50/(nmol·L-1) | Compd. | IC50/(nmol·L-1) | ||||
---|---|---|---|---|---|---|---|
MV4-11 | PC-3 | BT-474 | MV4-11 | PC-3 | BT-474 | ||
11 | 22.5 | 15.41 | 40.9 | 16 | >1000 | >1000 | >1000 |
12 | 225 | 30.2 | 171 | 17 | 112.3 | 67.95 | 141.2 |
13 | >1000 | >1000 | >1000 | 18 | 248 | 73.59 | 142 |
14 | 70.8 | 83.95 | 349 | 19 | 357 | 477 | 489 |
15 | 132.9 | 127.8 | 422 | 20 | >1000 | 107.2 | 115.5 |
NVP-BEZ235 | 35.1 | 14.36 | 35.6 |
[1] | Yan C., Zou Y., Fu J. J., Huang Z. J., Zhang D. Y., Zhang Y. H., Chem. J. Chinese Universities, 2017, 38(4), 591—597 |
(严畅, 邹瑜, 傅俊杰, 黄张建, 张大永, 张奕华.高等学校化学学报,2017, 38(4), 591—597) | |
[2] | Oh I., Cho H., Lee Y., Cheon M., Park D., Lee Y., Dev. Reprod., 2016, 20(1), 1—10 |
[3] | Chiarini F. C., Evangelisti J., Mccubrey J. A., Martelli A. M., Trends in Pharmacological Sciences, 2015, 36(2), 124—135 |
[4] | Wang N., Cheng X. H., Zheng J. M., Chen G. J., Jia Z. C., Chem. J. Chinese Universities, 2016, 37(5), 912—919 |
(王男, 程小桁, 郑积敏, 陈光巨, 贾宗超.高等学校化学学报,2016, 37(5), 912—919) | |
[5] | Sabbah D. A., Brattain M. G., Zhong H., Current Medicinal Chemistry, 2011, 18(36), 5528—5544 |
[6] | Li X., Wu C., Chen N., Gu H., Yen A., Cao L., Wang E., Wang L., Oncotarget,2016, 7(22), 33440—33450 |
[7] | Sun S. Y., Cancer Letters, 2013, 34(1), 1—8 |
[8] | Mabuchi S., Kuroda H., Takahashi R., Sasano T., Gynecologic Oncology, 2015, 137(1), 173—179 |
[9] | Czarnecka A. M., Kornakiewicz A., Lian F., Szczylik C., Future Oncology, 2015, 11(5), 801—817 |
[10] | Cheng H., Li C., Bailey S., Baxi S., Goulet L., Medicinal Chemistry Letters, 2013, 4(1), 91—97 |
[11] | Chiarini F., Evangelisti C., Mccubrey J. A., Martelli A. M., Trends in Pharmacological Sciences, 2015, 36(2), 124—135 |
[12] | Wang H., He C. Y., Yang Z. W., Gao S., Li L. X., Sun X. Y., Fang L., Liu N., Li H. J., Chem. Res. Chinese Universities, 2016, 32(3), 402—405 |
[13] | Laplante M., Sabatini D. M., J. Cell. Sci., 2010, 122, 3589—3594 |
[14] | Yang H. L., Xu G. X., Pei Y. Z., Chem. Res. Chinese Universities, 2017, 33(1), 61—69 |
[15] | Cheng H., Li C., Bailey S., Baxi S., Goulet L., Medicinal Chemistry Letters, 2013, 4(1), 91—97 |
[16] | Yu Z., Xie G., Zhou G., Cheng Y., Zhang G., Yao G., Chen Y., Li Y., Zhao G., Cancer Letters, 2015, 367(1), 58—68 |
[17] | Sauveur M. M., Molecular Cancer Therapeutics, 2008, 7(7), 1851—1863 |
[18] | Rozengurt E., Soares H. P., Sinnetsmith J., Molecular Cancer Therapeutics, 2014, 13(11), 2477—2488 |
[19] | Hugle M., Fulda S., Cancer Letters, 2015, 36(1), 1—9 |
[20] | Serra V., Markman B., Scaltriti M., Cancer Res., 2008, 68(19), 8022—8030 |
[21] | Huang Z., Wu Y., Zhou X., Qian J., Zhu J., Future Oncology, 2015, 11(11), 1687—1699 |
[22] | Lv X., Ma X., Hu Y., Expert Opinion on Drug Discovery,2013, 8(8), 991—1012 |
[23] | Martini M., Ciraolo E., Gulluni F., Hirsch E., Frontiers in Oncology, 2013, 3, 1—10 |
[24] | Kim A., Park S., Lee J. E., Leak Res., 2012, 36(7), 912—920 |
[25] | Ma X. D., Qiu N., Yang B., He Q. J., Hu Y. Z., Med. Chem. Commun., 2016, 7(2), 297—310 |
[26] | Senthil K., Natara J., Ravichan D., Yesuda D., Journal of the Indian Chemical Society,2015, 92(6), 921—924 |
[27] | Zhang W. J., Li Z., Zhou M., Wu F., Hou X. Y., Luo H., Liu H., Han X., Yan G. Y., Ding Z. Y., Li R., Bioorganic & Medicinal Chemistry Letters,2014, 24(3), 799—807 |
[28] | Gerlier D., Thomasset N., Journal of Immunological Methods, 1986, 94(1), 57—58 |
[29] | Baka E., Takács-Novák K., European Journal of Pharmaceutical Sciences,2007, 32(1), 22—50 |
[1] | YANG Dan, LIU Xu, DAI Yihu, ZHU Yan, YANG Yanhui. Research Progress in Electrocatalytic CO2 Reduction Reaction over Gold Clusters [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220198. |
[2] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[3] | HOU Hua, WANG Baoshan. Group Additivity Theoretical Model for the Prediction of Dielectric Strengths of the Alternative Gases to SF6 [J]. Chem. J. Chinese Universities, 2021, 42(12): 3709. |
[4] | YE Xiaodong, QI Guodong, XU Jun, DENG Feng. Glucose Oxidation on Au-supported SBA-15 Molecular Sieve [J]. Chem. J. Chinese Universities, 2020, 41(5): 960. |
[5] | CHANG Junpeng,ZHAO Jiarui,CHEN Sijia,MENG Kai,SHI Weini,LI Ruifang. Structure-activity Relationship of Antimicrobial Peptide SAMP1 and Its Analog Peptides† [J]. Chem. J. Chinese Universities, 2019, 40(4): 705. |
[6] | YU Min, HUANG Jingjing, MA Min, FU Ruiyan, YAN Yan, ZHANG Fusheng, YIN Junfeng, XIE Ningning. Zinc Chelating Activity and Quantitative Structure-activity Relationship of Tripeptides† [J]. Chem. J. Chinese Universities, 2018, 39(2): 234. |
[7] | HOU Hua, YU Xiaojuan, ZHOU Wenjun, LUO Yunbai, WANG Baoshan. Theoretical Investigations on the Structure-activity Relationship to the Dielectric Strength of the Insulation Gases† [J]. Chem. J. Chinese Universities, 2018, 39(11): 2477. |
[8] | LIU Yuming, TIAN Lijun, HU Dong, NIE Jianbing. yntheses and Anti-cholinesterase Activity of 4-N-Phenylaminoquinoline Derivatives † [J]. Chem. J. Chinese Universities, 2017, 38(3): 392. |
[9] | LIU Benguo, LIU Jiangwei, LI Jiaqi, GENG Sheng, MO Haizhen, LIANG Guizhao. 3D-QSAR and Interaction Mechanism of Flavonoids s P-glycoprotein Inhibitors† [J]. Chem. J. Chinese Universities, 2017, 38(1): 41. |
[10] | GUO Liang, CAO Rihui, FAN Wenxi, GAN Ziyun, MA Qin. Design, Synthesis and in vitro Antitumor Activities of Novel Bivalent β-Carbolines† [J]. Chem. J. Chinese Universities, 2016, 37(6): 1093. |
[11] | ZHANG Jie, ZHOU Changjian, XIE Jianwei, DAI Bin. Synthesis and Antitumor Activities of Rhein-Valine Adducts† [J]. Chem. J. Chinese Universities, 2016, 37(12): 2159. |
[12] | ZHANG Jing, MU Boshuai, WU Meng, BIAN Yanqing, LI Yuan. Synthesis, Antifungal Activity and Structure-activity Relationship of -Fluorophenyl-2,3-dihydro-1,5-benzothiazepines Derivatives† [J]. Chem. J. Chinese Universities, 2015, 36(4): 687. |
[13] | WANG Gang, HAN Leiqiang, FANG Hao. Syntheses and Antitumor Activities of Phenylpiperazine Derivatives† [J]. Chem. J. Chinese Universities, 2015, 36(12): 2435. |
[14] | KANG Wang, BU Huijuan, LI Wenhong, LI Yuan. Preliminary Structure-activity Relationship of 2-Ethoxycarbonyl-4-aryl-1,5-benzothiazepines with Antifungal Activity† [J]. Chem. J. Chinese Universities, 2014, 35(4): 766. |
[15] | GUO Liang, CAO Rihui, FAN Wenxi, MA Qin. Synthesis and Biological Evaluation of 1,2,7,9-Tetrasubstituted Harmine Derivatives as Potential Antitumor Agents† [J]. Chem. J. Chinese Universities, 2014, 35(3): 518. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||