Chem. J. Chinese Universities ›› 2016, Vol. 37 ›› Issue (6): 1059.doi: 10.7503/cjcu20160029
• Articles: Inorganic Chemistry • Previous Articles Next Articles
SHI Lei1,*(), YANG Wencong1, ZENG Shuying1, MO Tingting1, ZHANG Zhao2, CAO Manli1, LIU Haiyang2,*(
)
Received:
2016-01-13
Online:
2016-06-10
Published:
2016-05-26
Contact:
SHI Lei,LIU Haiyang
E-mail:shil@gdei.edu.cn;chhyliu@scut.edu.cn
Supported by:
CLC Number:
TrendMD:
SHI Lei, YANG Wencong, ZENG Shuying, MO Tingting, ZHANG Zhao, CAO Manli, LIU Haiyang. DNA-binding and Anti-tumor Activities of Cobalt Corrole Complexes†[J]. Chem. J. Chinese Universities, 2016, 37(6): 1059.
Fig.1 Changes in the UV-Vis spectra of complexes 1-Co(A), 2-Co(C)(1×10-5 mol/L) upon addition of ct-DNA and relationships between [DNA]/∣εa-εf∣and [DNA] during the interaction between 1-Co(B), 2-Co(D) and ct-DNA(A) [DNA]/(μmol·L-1) from a to j: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20; (C) [DNA]/(μmol·L-1) from a to i: 1, 2, 3, 4, 5, 6, 7, 8, 9.
Fig.2 Changes in the fluorescence spectra of ct-DNA-EB system upon addition of complex 1-Co at 298 K(A), 304 K(B), 310 K(C) and the plot of F0/F versus [1-Co] at different temperatures(D)[1-Co]/(μmol/L) from a to g: 0, 1, 2, 3, 4, 5, 6.
Complex | Temperature/K | KSV/(L·mol-1) | Kq/(L·mol-1·s-1) | R |
---|---|---|---|---|
1-Co | 298 | 5.22×104 | 5.22×1012 | 0.994 |
304 | 3.12×104 | 3.12×1012 | 0.973 | |
310 | 2.41×104 | 2.41×1012 | 0.970 | |
2-Co | 298 | 4.87×104 | 4.87×1012 | 0.978 |
304 | 4.83×104 | 4.83×1012 | 0.994 | |
310 | 4.03×104 | 4.03×1012 | 0.977 |
Table 1 Binding parameters of complexes 1-Co and 2-Co with DNA at different temperatures
Complex | Temperature/K | KSV/(L·mol-1) | Kq/(L·mol-1·s-1) | R |
---|---|---|---|---|
1-Co | 298 | 5.22×104 | 5.22×1012 | 0.994 |
304 | 3.12×104 | 3.12×1012 | 0.973 | |
310 | 2.41×104 | 2.41×1012 | 0.970 | |
2-Co | 298 | 4.87×104 | 4.87×1012 | 0.978 |
304 | 4.83×104 | 4.83×1012 | 0.994 | |
310 | 4.03×104 | 4.03×1012 | 0.977 |
Fig.3 Changes in the fluorescence spectra of ct-DNA-EB system upon addition of complex 2-Co at 298 K(A), 304 K(B), 310 K(C) and the plot of F0/F versus [2-Co] at different temperatures(D)[2-Co]/(μmol·L-1) from a to f: 0, 1, 2, 3, 4, 5.
Fig.7 Agarose gel electrophoresis patterns of 1-Co(A) or 2-Co(B) for the cleavage of supercoiled pBR 322 DNA(T=298 K)Reaction mixtures(10 μL) contained 0.1 μg of plasmid DNA, 1-Co or 2-Co. (A) Lane 1: DNA alone; lane 2: DNA(hν 2 h); lane 3: DNA+320 μmol/L 1-Co(no hν); lanes 4—8: DNA+40, 100, 160, 240, 320 μmol/L 1-Co respectively(hν 2 h). (B) Lane 1: DNA alone; lane 2: DNA(hν 2 h); lane 3: DNA+320 μmol/L 2-Co(no hν); lanes 4―8: DNA+40, 100, 160, 240, 320 μmol/L 2-Co respectively(hν 2 h).
Complex | H460 | Hela | A549 | |||
---|---|---|---|---|---|---|
Dark | Light | Dark | Light | Dark | Light | |
1-Co | 84±5.1 | 29±3.2 | 104±5.7 | 36±2.9 | 113±5.1 | 31±2.8 |
2-Co | 52±2.7 | 20±3.9 | 76±3.6 | 24±2.6 | 47±1.9 | 29±2.7 |
Table 2 Inhibitory activity[IC50/(μmol·L-1)] of complex 1-Co or 2-Co against selected cell lines
Complex | H460 | Hela | A549 | |||
---|---|---|---|---|---|---|
Dark | Light | Dark | Light | Dark | Light | |
1-Co | 84±5.1 | 29±3.2 | 104±5.7 | 36±2.9 | 113±5.1 | 31±2.8 |
2-Co | 52±2.7 | 20±3.9 | 76±3.6 | 24±2.6 | 47±1.9 | 29±2.7 |
Fig.8 Fluorescence microscopic images of Hoechst-33342-stained H460 cells after treatment with complex 2-Co(20 μmol/L) for 24 h(×200)(A) Control+bright field; (B) control+hoechst; (C) control+merge; (D) 2-Co+bright field;(E) 2-Co+hoechst; (F) 2-Co+merge.
[1] | Ding Y. B., Tang Y. Y., Zhu W. H., Xie Y. S., Chem. Soc. Rev., 2015, 44, 1101—1112 |
[2] | Xie Y. S., Tang Y. Y., Wu W. J., Wang Y. Q., Liu J. C., Li X., Tian H., Zhu W. H., J. Am. Chem. Soc., 2015, 137, 14055—14058 |
[3] | Wei T. T., Sun X., Li X., Ågren H., Xie Y. S., ACS Appl. Mater. Interfaces, 2015, 7, 21956—21965 |
[4] | Wang Y. Q., Chen B., Wu W. J., Li X., Zhu W. H., Tian H., Xie Y. S., Angew. Chem. Int. Ed., 2014, 53, 10779—10783 |
[5] | Mi Y. S., Liang P. X., Yang Z., Wang D., Cao H., He W. L., Yang H., Chem. Res. Chinese Universities, 2015, 31(6), 992—996 |
[6] | Vanya B., Lidiya P., Pavel K., Photochem. Photobiol. B-Biology, 2015, 153, 276—280 |
[7] | Liu H. Y., Mahmood M. H. R., Qiu S. X., Chang C. K., Coord. Chem. Rev., 2013, 267, 1306—1333 |
[8] | Aviv-Harel I., Gross Z., Coord. Chem. Rev., 2011, 255, 717—736 |
[9] | Chang C. K., Kong P. W., Liu H. Y., Yeung L. L., Koon H. K., Mak N. K., Proc. SPIE, 2006, 6139, 613915 |
[10] | Agadjanian H., Ma J., Rentsendorj A., Valluripalli V., Hwang J. Y., Mahammed A., Farkas D. L., Gray H. B., Gross Z., Medina-Kauwe L. K., Proc. Natl. Acad. Sci., 2009, 106, 6105—6110 |
[11] | Haber A., Mahammed A., Fuhrman B., Volkova N., Coleman R., Hayek T., Aviram M., Gross Z., Angew. Chem. Int. Ed., 2008, 47, 7896—7900 |
[12] | Gossens C., Tavernelli I., Rothlisberger U., J. Am. Chem. Soc., 2008, 130, 10921—10928 |
[13] | An D., Zhao X. H., Zhou M., Ye Z. W., Chem. J. Chinese Universities, 2014, 35(2), 275—280 |
(安东, 赵晓辉, 周密, 叶志文. 高等学校化学学报, 2014, 35(2), 275—280) | |
[14] | Li X. L., Ma D. L., Yang H. L., Tan G. H., Du H. R., Wang K. R., Zhang P. Z., Chen H., Chem. J. Chinese Universities, 2014, 35(6), 1181—1188 |
(李小六, 马东来, 杨海龙, 谭官海, 杜会茹, 王克让, 张平竹, 陈华. 高等学校化学学报, 2014, 35(6), 1181—1188) | |
[15] | Zhang H., Liu C. S., Bu X. H., Yang M., J. Inorg. Biochem., 2005, 99, 1119—1125 |
[16] | Wang J. M., Shi L., Liu H. Y., Prog. Chem., 2015, 27(6), 755—762 |
(王家敏, 史蕾, 刘海洋. 化学进展, 2015, 27(6), 755—762) | |
[17] | Shi L., Liu H. Y., Peng K. M., Wang X. L., You L. L., Lu J., Zhang L., Wang H., Ji L. N., Jiang H. F., Tetrahedron. Lett., 2010, 51, 3439—3442 |
[18] | Huang J. T., Zhang Y., Wang X. L., Ji L. N., Liu H. Y., Chinese J. Inorg. Chem., 2013, 29(8), 1649—1656 |
(黄俊腾, 张阳, 王湘利, 计亮年, 刘海洋. 无机化学学报, 2013, 29(8), 1649—1656 | |
[19] | Zhang Y., Chen H., Wen J. Y., Wang X. L., Wang H., Ji L. N., Liu H. Y., Chem. J. Chinese Universities, 2013, 34(11), 2462—2469 |
(张阳, 陈欢, 闻金燕, 王湘利, 王惠, 计亮年, 刘海洋. 高等学校化学学报, 2013, 34(11), 2462—2469) | |
[20] | Zhang Y., Wen J. Y., Wang X. L., Mahmood M. H. R., Liu Z. Y., Wang H., Ji L. N., Liu H. Y., Appl. Organometal. Chem., 2014, 28, 559—566 |
[21] | Fu B.Q., Huang J., Ren L., Weng X. C., Zhou Y. Y., Du Y. H., Wu X. J., Zhou X., Yang G. F.,Chem. Commun., 2007, 3264—3266 |
[22] | Fu B. Q., Zhang D., Weng X. C., Zhang M., Ma H., Ma Y. Z., Zhou X., Chem. Eur. J., 2008, 14, 9431—9441 |
[23] | Ma H., Zhang M., Zhang D., Huang R., Zhao Y., Yang H., Liu Y. J., Weng X. C., Zhou Y. Y., Deng M. G., Xu L., Zhou X., Chem. Asian J., 2010, 5, 114—122 |
[24] | Durso A., Nardis S., Pomarico G., Fragal M. E., Paolesse R., Purrello R., J. Am. Chem. Soc., 2013, 135, 8632—8638 |
[25] | Cannon J. R., Johnson A. W., Todd A. R., Nature, 1954, 174, 1168—1169 |
[26] | Djinovic K., Coda A., Antolini L., J. Mol. Biol., 1992, 226, 227—238 |
[27] | Lv J., Liu T. T., Cai S. L., Wang X., Liu L., Wang Y. M., J. Inorg. Biochem., 2006, 100, 1888—1896 |
[28] | Singh K., Kumar Y., Puri P., Kumar M., Sharma C., Eur. J. Med. Chem., 2012, 52, 313—321 |
[29] | López-Sandoval H., Londono-Lemos M. E., Garza-Velasco R., Poblano-Meléndez I., Granada-Macías P., Gracia-Mora I., Barba-Behrens N., J. Inorg. Biochem., 2008, 102, 1267—1276 |
[30] | Ott I., Abraham A., Schumacher P., Shorafa H., Gastl G., Gust R., Kircher B., J. Inorg. Biochem., 2006, 100, 1903—1906 |
[31] | Dimiza F., Papadopoulos A. N., Tangoulis V., Psycharis V., Raptopoulou C. P., Kessisso-glou D. P., Psomas G., Dalton. Trans., 2010, 39, 4517—4528 |
[32] | Dimiza F., Papadopoulos A. N., Tangoulis V., Psycharis V., Raptopoulou C. P., Kessisso-glou D. P., Psomas G., J. Inorg. Biochem., 2012, 107, 54—64 |
[33] | Farinas E. T., Tan J. D., Mascharak P. K., Inorg. Chem., 1996, 35, 2637—2643 |
[34] | Lu W. J., Wang H. M., Yuann J. M. P., Huang C. Y., Hou M. H., J. Inorg. Biochem., 2009, 103, 1626—1633 |
[35] | Sun Y., Hou Y. J., Zhou Q. X., Lei W. H., Chen J. R., Wang X. S., Zhang B. W., Inorg. Chem., 2010, 49, 10108—10116 |
[36] | Wolfe A., Shimer G. H., Meehan T., Biochem., 1987, 26, 6392—6396 |
[37] | Lakowicz J. R., Webber G., Biochem., 1973, 12, 4161—4170 |
[38] | Satyanarayana S., Dabrowiak J. C., Chaires J. B., Biochem., 1993, 32, 2573—2584 |
[39] | Zhang Z., Wen J. Y., Lv B. B., Li X., Ying X., Wang Y. J., Zhang H. T., Wang H., Liu H. Y., Chang C. K., Appl. Organometal. Chem., 2016, 30, 132—139 |
[40] | Pasternack R. F., Gibbs E. J., Villafranca J. J., Biochem., 1983, 22, 2406—2414 |
[41] | LePecq J. B., Paoletti C., J. Mol. Biol., 1967, 27, 87—106 |
[42] | Yun-Kai L. V., Li P., Jiao M. L., Liu B. S., Yang C., Turk. J. Chem., 2014, 38, 202—209 |
[43] | Sun Y. T., Peng T. T., Zhao L., Jiang D. Y., Cui Y. C., J. Lumin., 2014, 156, 108—115 |
[44] | Ivanov V. I., Minchenkova L. E., Schyolkina A. K., Poletayev A. I., Biopolymers, 1973, 12, 89—110 |
[45] | Nordén B., Tjerneld F., Biopolymers, 1982, 21, 1713—1734 |
[46] | Satyanarayana S., Dabrowiak J. C., Chaires J. B., Biochem., 1992, 31, 9319—9324 |
[47] | Ji L. N., Zhou X. H., Liu J. G., Coord. Chem. Rev., 2001, 216, 513—536 |
[48] | Inclán M., Albelda M. T., Frías J. C., Blasco S., Verdejo B., Serena C., Salat-Canela C., Díaz M. L., García-España A., García-España E., J. Am. Chem. Soc., 2012, 134, 9644—9656 |
[49] | Qi L., Ding Y. Q., Scientia Sinica Vitae, 2013, 43(11), 939—946 |
[50] | Xiang J. Y., Xia X. S., Jiang Y., Leung A. W. N, Wang X. N., Xu J., Wang P., Yu H. P., Bai D. Q., Xu C. S., Ultrasonics, 2011, 51, 390—395 |
[51] | Domingo-Gil E., Esteban M., Apoptosis., 2006, 11, 725—738 |
[52] | Zhao C. Q., Zhang Y. H., Jiang S. D., Jiang L. S., Dai L. Y., AGE, 2010, 32, 161—177 |
[53] | Green D. R., Reed J. C., Science, 1998, 28, 1309—1312 |
[54] | Reers M., Smiley S. T., Mottola-Hartshorn C., Chen A., Lin M., Chen L. B., Method Enzymol., 1995, 260, 406—414 |
[1] | LIU Suyu, DING Fei, LI Qian, FAN Chunhai, FENG Jing. Azobenzene-integrated DNA Nanomachine [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220122. |
[2] | WU Yushuai, SHANG Yingxu, JIANG Qiao, DING Baoquan. Research Progress of Controllable Self-assembled DNA Origami Structure as Drug Carrier [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220179. |
[3] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[4] | WANG Junyang, LIU Zheng, ZHANG Qian, SUN Chunyan, LI Hongxia. Application of DNA Silver Nanoclusters in the Fluorescence Biosensors based on Functional Nucleic Acids [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220010. |
[5] | XU Dandan, ZOU Xiucheng, LUO Jing, LIU Ren. Synthesis and Characterization of Phenothiazine-based Schiff Bases as Visible Light Photoinitiators [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210857. |
[6] | YU Bin, CHEN Xiaoyan, ZHAO Yue, CHEN Weichang, XIAO Xinyan, LIU Haiyang. Graphene Oxide-based Cobalt Porphyrin Composites for Electrocatalytic Hydrogen Evolution Reaction [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210549. |
[7] | ZHU Qichen, XIONG Ming, TAO Siyu, TANG Siwei, REN Qizhi. Effect of Light Source on the Photocatalytic Performance of Dihydroxynaphthalene by Water-soluble Sulfonated Porphyrins [J]. Chem. J. Chinese Universities, 2021, 42(6): 1933. |
[8] | WU Yangyi, CHEN Jianping, Ai Yijing, WANG Qingxiang, GAO Fei, GAO Feng. Synthesis of 2-(2-Hydroxy-3-methoxyphenyl)-C60 and Its Application for Sensing of Cauliflower Mosaic Virus 35S Promotor [J]. Chem. J. Chinese Universities, 2021, 42(6): 1754. |
[9] | MA Zihui, WANG Mengyan, CAO Hongyu, TANG Qian, WANG Lihao, ZHENG Xuefang. Transient Absorption and Decay Kinetic Properties of Photo-excited Metal Coordinated Tetraphenylporphyrin [J]. Chem. J. Chinese Universities, 2021, 42(3): 767. |
[10] | YANG Xinjie, LAI Yanqiong, LI Qiuyang, ZHANG Yanli, WANG Hongbin, PANG Pengfei, YANG Wenrong. An Enzyme-free and Label-free Fluorescent Probe for Detection of Microcystin-LR Based on Circular DNA-Silver Nanoclusters [J]. Chem. J. Chinese Universities, 2021, 42(12): 3600. |
[11] | LIU Xuejiao, YANG Fan, LIU Shuang, ZHANG Chunjuan, LIU Qiaoling. Progress in Aptamer-targeted Membrane Protein Recognition and Functional Regulation [J]. Chem. J. Chinese Universities, 2021, 42(11): 3277. |
[12] | MAO Yu, QU Hao, ZHENG Lei. Research Progress on RNA⁃cleaving DNAzyme for the Detection of Pathogenic Bacteria [J]. Chem. J. Chinese Universities, 2021, 42(11): 3445. |
[13] | HU Ling, YIN Yao, KE Guoliang, ZHANG Xiaobing. Regulation of Cell-cell Interactions Based on DNA Nanostructures [J]. Chem. J. Chinese Universities, 2021, 42(11): 3284. |
[14] | PENG Huo, GAO Zehang, LIAO Chengyue, WANG Xiaodong, ZHOU Hongbo, ZHAO Jianlong. Robust Droplet Digital PCR Chip for Absolute Quantitative Detection of Nucleic Acid [J]. Chem. J. Chinese Universities, 2020, 41(8): 1760. |
[15] | REN Yushuang, GUO Yuanyuan, LIU Xueyi, SONG Jie, ZHANG Chuan. Platinum(Ⅳ) Prodrug-grafted Phosphorothioate DNA and Its Self-assembled Nanostructure for Targeted Drug Delivery [J]. Chem. J. Chinese Universities, 2020, 41(8): 1721. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||