Chem. J. Chinese Universities ›› 2014, Vol. 35 ›› Issue (8): 1810.doi: 10.7503/cjcu20140273
• Polymer Chemistry • Previous Articles Next Articles
WANG Huan, CHEN Ning*(), WANG Qi
Received:
2014-03-28
Online:
2014-08-10
Published:
2014-07-04
Contact:
CHEN Ning
E-mail:ningchen@scu.edu.cn
Supported by:
CLC Number:
TrendMD:
WANG Huan, CHEN Ning, WANG Qi. Interaction Between β-Tricalcium Phosphate and Poly(vinyl alcohol) and Its Effect on the Thermal and Mechanical Properties of Poly(vinyl alcohol)†[J]. Chem. J. Chinese Universities, 2014, 35(8): 1810.
Sample | νO—H/cm-1 | νC—H/cm-1 | δC—H/cm-1 | δO—H/cm-1 | νC—O/cm-1 |
---|---|---|---|---|---|
PVA | 3316 | 2921, 2858 | 1425 | 1656 | 1089 |
PVA/β-TCP-10% | 3308 | 2924, 2855 | 1426 | 1657 | 1085 |
PVA/β-TCP-20% | 3304 | 2925, 2856 | 1425 | 1651 | 1080 |
PVA/β-TCP-30% | 3301 | 2922, 2858 | 1424 | 1662 | 1073 |
Table 1 FTIR characterization peaks of PVA and PVA/β-TCP composites
Sample | νO—H/cm-1 | νC—H/cm-1 | δC—H/cm-1 | δO—H/cm-1 | νC—O/cm-1 |
---|---|---|---|---|---|
PVA | 3316 | 2921, 2858 | 1425 | 1656 | 1089 |
PVA/β-TCP-10% | 3308 | 2924, 2855 | 1426 | 1657 | 1085 |
PVA/β-TCP-20% | 3304 | 2925, 2856 | 1425 | 1651 | 1080 |
PVA/β-TCP-30% | 3301 | 2922, 2858 | 1424 | 1662 | 1073 |
Sample | O1s | Ca2p | ||
---|---|---|---|---|
β-TCP | 531.0 | 532.4 | 347.2 | 350.8 |
PVA | 532.5 | |||
PVA/β-TCP-30% | 531.6 | 532.6 | 347.6 | 351.3 |
Table 2 XPS data of β-TCP, PVA and PVA/β-TCP composites
Sample | O1s | Ca2p | ||
---|---|---|---|---|
β-TCP | 531.0 | 532.4 | 347.2 | 350.8 |
PVA | 532.5 | |||
PVA/β-TCP-30% | 531.6 | 532.6 | 347.6 | 351.3 |
Fig.6 DSC curves of PVA/β-TCP composites using the high-pressure stainless steel pan a. Modified PVA; b. modified PVA/β-TCP-10%; c. modified PVA/β-TCP-20%; d. modified PVA β-TCP-30%.
[1] | Bohner M., Galea L., Doebelin N., J. Eur. Ceram. Soc., 2012, 32, 2663—2671 |
[2] | Liu L. L., Zhang J., Qiao J. L., Chem. J. Chinese Universities, 2012, 33(8), 1842—1849 |
(刘玲玲, 张璟, 乔锦丽. 高等学校化学学报, 2012, 33(8), 1842—1849) | |
[3] | Chen R. S., Chen M. H., Young T. H., Biomaterials, 2009, 30(4), 541—547 |
[4] | Walsh W. R., Vizesi F., Michae D., Auld J., Langdown A., Oliver R., Yu Y., Irie H., Bruce W., Biomaterials, 2008, 29(3), 266—271 |
[5] | Chen N., Li L., Wang Q., Plast. Rubber Compos., 2007, 36(7/8), 283—290 |
[6] | Fernandes E. M., Pires R. A., Mano J. F., Reis R. L., Prog. Polym. Sci., 2013, 38, 1415—1441 |
[7] | Macias C. E., Senturk H. B., Muratoglu O. K., Polymer, 2013, 54, 724—729 |
[8] | Bohner M., Materials Today, 2010, 13(1/2), 24—30 |
[9] | Wang Q., Li L., Chen N., Liu Y., Bai S. B., Acta Polym. Sin., 2011, 9, 932—938 |
(王琪, 李莉, 陈宁, 刘渊, 白时兵. 高分子学报, 2011, 9, 932—938) | |
[10] | Wang Q., Li L., Chen N., Bai S. B., Polymer Materials Science & Engineering, 2014, 30(2), 192—197 |
(王琪, 李莉, 陈宁, 白时兵. 高分子材料科学与工程, 2014, 30(2), 192—197) | |
[11] | Chen X., Chen N., Wang Q., Polymer Bulletin(China), 2013, 6, 26—32 |
(陈晓, 陈宁, 王琪. 高分子通报, 2013, 6, 26—32) | |
[12] | Wang X., Li L., Chen N., Wang Q., Chem. J. Chinese Universities, 2012, 33(4), 813—817 |
(王郗, 李莉, 陈宁, 王琪. 高等学校化学学报, 2012, 33(4), 813—817) | |
[13] | Wang X., Yang Y. J., Li L., Aata Polym. Sin., 2013, 10, 1247—1252 |
(王郗, 杨玉军, 李莉. 高分子学报, 2013, 10, 1247—1252) | |
[14] | Wang B., Wang Q., Li L., J. Macromol. Sci., Phys., 2014, 53(1), 78—92 |
[15] | Coelho P. G., Coimbra M. E., Ribeiro C., Fancio E., Higa O., Suzuki M., Marincola M., Materials Science and Engineering: C, 2009, 29(7), 2085—2091 |
[16] | Chang M. C., Tanaka J., Biomaterials, 2002, 23, 3879—3885 |
[17] | Tao T. X., Wu Z. C., Wang X. Q., Li M. S., Zhang J. H., Acta Polym. Sin., 2006, 3, 387—390 |
(陶庭先, 吴之传, 汪学谦, 李梅生, 张俊华. 高分子学报, 2006, 3, 387—390) | |
[18] | Zheng P., Kong L. X., Polym. Degrade. Stab., 2007, 92, 1061—1071 |
[19] | Liang Z.J., Reinforcing and Toughening Theories of Polymer Composites, South China University of Technology Press, Guangzhou, 2012, 96—101 |
(梁基照. 聚合物复合材料增强增韧理论, 广州: 华南理工大学出版社, 2012, 96—101) | |
(Ed.: W, Z) |
[1] | JIANG Bowen, CHEN Jingxuan, CHENG Yonghua, SANG Wei, KOU Zongkui. Recent Progress of Single-atom Materials in Electrochemical Biosensing [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220334. |
[2] | WANG Sicong, PANG Beibei, LIU Xiaokang, DING Tao, YAO Tao. Application of XAFS Technique in Single-atom Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220487. |
[3] | LUO Xinyan, JIA Ruonan, XIANG Yong, ZHANG Xiaokun. Progress on the Stretchable Composite Solid Polymer Electrolytes [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220149. |
[4] | XIA Tian, WAN Jiawei, YU Ranbo. Progress of the Structure-property Correlation of Heteroatomic Coordination Structured Carbon-based Single-atom Electrocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220162. |
[5] | ZHANG Yong, XU Jun, BAO Yu, CUI Shuxun. Quantifying the Degree of Weakening Effect of Nonpolar Organic Solvent on the Strength of Intramolecular Hydrogen Bonding by Single-molecule Force Spectroscopy [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210863. |
[6] | ZHANG Zhibo, SHANG Han, XU Wenxuan, HAN Guangdong, CUI Jinsheng, YANG Haoran, LI Ruixin, ZHANG Shenghui, XU Huan. Self-Assembly of Graphene Oxide at Poly(3-hydroxybutyrate) Microparticles Toward High-performance Intercalated Nanocomposites [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210566. |
[7] | XU Huan, KE Lyu, TANG Mengke, SHANG Han, XU Wenxuan, ZHANG Zilin, FU Yanan, HAN Guangdong, CUI Jinsheng, YANG Haoran, GAO Jiefeng, ZHANG Shenghui, HE Xinjian. In⁃situ Liquid Exfoliation of Montmorillonite Nanosheets in Poly(lactic acid) to Resist Oxygen Permeation [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220316. |
[8] | BAI Jingqi, BAI Shan, REN Lixia, ZHU Kongying, ZHAO Yunhui, LI Xiaohui, YUAN Xiaoyan. Trehalose-modified Poly(vinyl alcohol) and Their Antifogging/Antifrosting Coatings [J]. Chem. J. Chinese Universities, 2021, 42(8): 2683. |
[9] | LIANG Pingping, LIU Shuai, LI Hongyi, DING Yadan, WEN Xiaokun, LIU Junping, HONG Xia. Self-floating Porous PVDF-CNT Microbeads for Highly Efficient Solar-driven Interfacial Water Evaporation [J]. Chem. J. Chinese Universities, 2021, 42(8): 2689. |
[10] | WANG Xianwei, KE Hongjun, YUAN Hang, LU Gewu, LI Liying, MENG Xiangsheng, SONG Shulin, WANG Zhen. High Temperature Resistant and Soluble Polyimide Resins and Their Composites [J]. Chem. J. Chinese Universities, 2021, 42(6): 2041. |
[11] | WANG Jie, LI Ying, SHAO Liang, BAI Yang, MA Zhonglei, MA Jianzhong. Preparation and Properties of Poly(vinyl alcohol)/polypyrrole Composite Conductive Hydrogel Strain Sensor [J]. Chem. J. Chinese Universities, 2021, 42(3): 929. |
[12] | XU Xiaozhou, LIU Yi, HE Minhui, MO Song, LAN Bangwei, ZHAI Lei, FAN Lin. Effect of Copolymerization Structure and Molecular Weight on Melt Fluidity and Thermal Properties of Thermoplastic Polyimide Resins [J]. Chem. J. Chinese Universities, 2021, 42(3): 919. |
[13] | WANG Peng, MAO Dan, WAN Jiawei, QI Qi, DU Jiang, WANG Dan. Effect of Hollow Multi-shelled TiO2 on Mechanical Properties of Epoxy Resin Composites [J]. Chem. J. Chinese Universities, 2021, 42(10): 3218. |
[14] | SHA Di, YU Xumin, ZHAO Jiang, MA Xiaofei, WANG Hanfu, LIU Fangfang, QIU Xuepeng. Preparation and Mechanical Properties of Carbon Fiber Triaxial Woven Fabric/Epoxy Composites † [J]. Chem. J. Chinese Universities, 2020, 41(4): 838. |
[15] | SONG Li, LIN Jiaxiang, HUANG Dinghai. New Thermal Features of Ethylene-based Polyolefins with Different Chain Architectures as Investigated by Step Scan Differential Scanning Calorimetry Method [J]. Chem. J. Chinese Universities, 2019, 40(8): 1740. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||