Chem. J. Chinese Universities ›› 2014, Vol. 35 ›› Issue (4): 888.doi: 10.7503/cjcu20130841
• Polymer Chemistry • Previous Articles Next Articles
LI Meisheng, ZHAO Zhiping*(), WANG Mingxing
Received:
2013-08-30
Online:
2014-04-10
Published:
2014-01-23
Contact:
ZHAO Zhiping
E-mail:zhaozp@bit.edu.cn
Supported by:
CLC Number:
TrendMD:
LI Meisheng, ZHAO Zhiping, WANG Mingxing. Acrylic Acid Grafting of Polyethylene Hollow Fiber Membranes in a Module Scale via Long-distance and Dynamic Low-temperature Plasma Flow†[J]. Chem. J. Chinese Universities, 2014, 35(4): 888.
Fig.1 Preparation process of the PE-g-AA membrane module via LDDLT plasma flow irradiation and subsequent graft polymerization and characterization measurement points (A) Plasma irradiation; (B) exposure to air; (C) grafting.
Fig.3 Dependence of the outside membrane surface morphology on the axial distance from the module inlet(A) Original; (B) plasma-treated; (C) PE-g-AA. Meansured position/cm: Label 1: 0—1; label 2: 10—11; label 3: 19—20.
Fig.4 FTIR spectra of plasma-treated PE(A) and PE-g-AA(B) membranes at different positions from the module inlet(outside membrane surface)a0, b0: Original PE; meansured position/cm: a1, b1. 0.5—1.0; a2, b2. 3.5—4.0; a3, b3. 7.5—8.0; a4, b4. 12.0—12.5; a5, b5. 17.0—17.5; a6, b6. 21.0—21.5.
Outside membrane surface | Distance from the module inlet/cm | C | O | N | O/C | N/C |
---|---|---|---|---|---|---|
Original PE | 94.70 | 5.73 | 0 | 0.060 | 0 | |
0—1 | 54.19 | 42.80 | 3.02 | 0.790 | 0.056 | |
Plasma-treated PE | 10—11 | 75.37 | 19.18 | 5.47 | 0.254 | 0.073 |
19—20 | 75.80 | 18.72 | 5.48 | 0.247 | 0.072 | |
0—1 | 69.03 | 29.99 | 0.99 | 0.434 | 0.014 | |
PE-g-AA | 10—11 | 67.77 | 31.00 | 1.23 | 0.457 | 0.018 |
19—20 | 69.20 | 29.65 | 1.15 | 0.428 | 0.016 |
Table 1 Elemental concentrations(%) of original PE, plasma-treated PE and PE-g-AA membranes at different positions from the module inlet
Outside membrane surface | Distance from the module inlet/cm | C | O | N | O/C | N/C |
---|---|---|---|---|---|---|
Original PE | 94.70 | 5.73 | 0 | 0.060 | 0 | |
0—1 | 54.19 | 42.80 | 3.02 | 0.790 | 0.056 | |
Plasma-treated PE | 10—11 | 75.37 | 19.18 | 5.47 | 0.254 | 0.073 |
19—20 | 75.80 | 18.72 | 5.48 | 0.247 | 0.072 | |
0—1 | 69.03 | 29.99 | 0.99 | 0.434 | 0.014 | |
PE-g-AA | 10—11 | 67.77 | 31.00 | 1.23 | 0.457 | 0.018 |
19—20 | 69.20 | 29.65 | 1.15 | 0.428 | 0.016 |
Fig.5 XPS spectra of plasma-treated PE(A) and PE-g-AA(B) membranes at different positions from the module inlet(outside membrane surface) a0, b0: Original PE; meansured position/cm: a1, b1. 0—1; a2, b2. 10—11; a3, b3. 19—20.
Membrane | (L·m-2·h-1) | JWR/ (L·m-2·h-1) | FRR(%) | J0/ (L·m-2·h-1) | JF/ (L·m-2·h-1) | R0(%) | RF(%) |
---|---|---|---|---|---|---|---|
Original PE(Module D) | 39.11 | 28.36 | 72.51 | 97.76 | 22.85 | 2.10 | 41.77 |
Plasma-treated PE(Module A) | 56.26 | 44.46 | 79.03 | 94.83 | 24.78 | 8.33 | 50.95 |
PE-g-AA(Module C) | 55.49 | 45.39 | 81.79 | 81.80 | 32.28 | 11.44 | 48.03 |
Table 2 Flux, BSA rejection and FRR of the original PE, plasma-treated PE and PE-g-AA membrane modules
Membrane | (L·m-2·h-1) | JWR/ (L·m-2·h-1) | FRR(%) | J0/ (L·m-2·h-1) | JF/ (L·m-2·h-1) | R0(%) | RF(%) |
---|---|---|---|---|---|---|---|
Original PE(Module D) | 39.11 | 28.36 | 72.51 | 97.76 | 22.85 | 2.10 | 41.77 |
Plasma-treated PE(Module A) | 56.26 | 44.46 | 79.03 | 94.83 | 24.78 | 8.33 | 50.95 |
PE-g-AA(Module C) | 55.49 | 45.39 | 81.79 | 81.80 | 32.28 | 11.44 | 48.03 |
Fig.7 Pure water fluxes as a function of filtration time after different aging times(A) Plasma-treated membrane module(Module E), ○ original PE, □ plasma-treated PE membrane module after different aging times; (B) PE-g-AA membrane module(Module B), □ original PE, ○ PE-g-AA membrane module after different aging times.
Fig.8 Dependence of the water contact angles for outside membrane surfaces on the distance from the plasma inlet, for different treatment processes□ Original PE; —?— plasma-treated after 7 times dynamic water filtrations for 90 d of aging(Module E); —☆— PE-g-AA after 7 times dynamic water filtrations for 120 d of aging(Module B).
[1] | Bergbreiter D. E., Prog. Polym. Sci., 1994, 19, 529—560 |
[2] | Wang M., Wang Z., Li Z.X., Membrane Materials and Membrane Preparation, Beijing: Chemical Industry Press, 2003 |
(汪锰, 王湛, 李政雄. 膜材料及其制备, 北京: 化学工业出版社, 2003) | |
[3] | Lu X. F., Bian X. K., Membrane Science and Technology,2003, 23(4), 97—102 |
(陆晓峰, 卞晓锴. 膜科学与技术, 2003, 23(4), 97—102) | |
[4] | Yang J., Wang X. L., Polymer Materials Science and Engineering,2006, 22(4), 6—14 |
(杨健, 王晓琳. 高分子材料科学与工程, 2006, 22(4), 6—14) | |
[5] | Wang X. Q., Zhu B. K., Qiu G. M., Xu Y. Y., Journal of Functional Polymers,2005, 18(12), 703—708 |
(王晓琴, 朱宝库, 邱广明, 徐又一. 功能高分子学报, 2005, 18(12), 703—708) | |
[6] | Johansson J., Masuoka T., Macromol. Rapid Comm., 1999, 20, 12—15 |
[7] | Steen M. L., Hymas L., Havey E. D., Capps N. E., Castner D. G., Fisher E. R., J. Membr. Sci., 2001, 188, 97—114 |
[8] | Wavhal D. S., Fisher E. R., Desalination,2005, 172, 189—205 |
[9] | Zhao Z. P., Liu W. F., Membrane Modification Method by Long-distance Plasms in a Module Scale, ZL 201110066542.5,2013-05-22 |
(赵之平, 刘文芳. 一种利用远程等离子体对膜组件整体改性的装置及方法, ZL 201110066542.5, 2013-05-22) | |
[10] | Zhao Z. P., Li M. S., Liu W. F., Zhang Y., Cheng K. C., A Method for Chemical Grafting Modification of Membranes in a Module Scale by Remote Plasmas, CN 102773020A,2012-07-18 |
(赵之平, 李梅生, 刘文芳, 张悦, 陈康城. 一种利用远程等离子体对膜组件进行整体化学接枝的方法, CN 102773020A, 2012-07-18) | |
[11] | Li M. S., Zhao Z. P., Li N., Zhang Y., J. Membr. Sci., 2013, 427, 431—442 |
[12] | Wavhal D.S., Fisher E.R., J. Membr. Sci., 2002, 209, 255—269 |
[13] | Zhao Z. P., Li N., Li M. S., Zhang Y., Plasma Chem. Plasma P,2012, 32, 1243—1258 |
[14] | Zhao Z. P., Li M. S., Li N., Wang M. M., Zhang Y., J. Membr. Sci., 2013, 440, 9—19 |
[15] | Yu H. J., Cao Y. M., Kang G. D., Zhou M. Q., Liu J. H., Yuan Q., Chem. J. Chinese Universities,2010, 31(12), 2506—2510 |
(于海军, 曹义鸣, 康国栋, 周美青, 刘健辉, 袁权. 高等学校化学学报, 2010, 31(12), 2506—2510) | |
[16] | Chen K., Gao J., Yu J. Y., Huan W. H., Ma Y. Z., CIESC Journal,2011, 62(4), 1170—1175 |
(陈亏, 高晶, 俞建勇, 还伟海, 马一梓. 化工学报, 2011, 62(4), 1170—1175) | |
[17] | Guruvenket S., Mohan Rao G., Komath M., Raichur A. M., Appl. Surf. Sci., 2004, 236, 278—284 |
[18] | Rjeb A., Letarte S., Tajounte L., Chafik EI Idrissi M., Adnot A., Roy D., Claire Y., Kaloustian J., Electron Spectrosc.Relat.Phenom., 2000, 107, 221—230 |
[19] | Zhang W., Chu P.K., Ji J.H., Zhang Y. H., Fu R. K. Y., Yan Q., Polymer,2006, 47, 931—936 |
[20] | Marshall A. D., Munro P. A., Tragardh G., Desalination,1993, 91, 65—108 |
[21] | Dong C. H., Qi W., He Z.M., CIESC Journal,2007, 58(6), 1502—1506 |
(董春华, 齐崴, 何志敏. 化工学报, 2007, 58(6), 1502—1506) | |
[22] | Roy S., Yue C.Y., Lam Y.C., Wang Z.Y., Hu H.F., Sensors Actuat.B,2010, 150, 537—549 |
[1] | LIU Kun, YIN Yuan, GENG Wenqiang, XIA Haotian, LI Hua. Influence Mechanism of Filling Transition Metal Oxide Catalyst with Different Components on Nitrogen Fixation in Dielectric Barrier Discharge [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220278. |
[2] | SHI Ying, HU Guangjian, WU Minjie, LI Feng. Applications of Low Temperature Plasma for the Materials in Li-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(5): 1315. |
[3] | ZHANG Jihua,WANG Chao,ZAO Weitao,LI Li,LIU Xiaoyan,YANG Yuan,WANG Hao. Preparation of High-performance Montmorillonite/hydrogenated Butadiene-acrylonitrile Rubber by Using Electrostatic Interfaces [J]. Chem. J. Chinese Universities, 2020, 41(4): 803. |
[4] | ZHAO Yanfeng,SUN Xiaolong,HU Shaozheng,WANG Hui,WANG Fei,LI Ping. Effect of Oxygen on Photocatalytic Nitrogen Fixation Performance of N Vacancy-embedded Graphitic Carbon Nitride † [J]. Chem. J. Chinese Universities, 2020, 41(1): 132. |
[5] | SUN Guangdong, PAN Xiaopeng, ZHONG Yuhao, CHEN Enyu, HUANG Yi, SHAO Jianzhong. Photopolymerization Kinetics of Poly(Acrylate Acid) Hydrogels Induced by Blue Light † [J]. Chem. J. Chinese Universities, 2019, 40(11): 2404. |
[6] | ZHU Xingye,QIAN Huidong,JIANG Jingjing,YUE Zhouying,XU Jianfeng,ZOU Zhiqing,YANG Hui. Cross-linking of Imidazole-grafted Sulfonated Poly(ether ether ketone) as Proton Exchange Membranes for Direct Methanol Fuel Cells† [J]. Chem. J. Chinese Universities, 2018, 39(9): 2046. |
[7] | LI Aiju, WANG Yuxi, LU Shaoyong, LIU Kun. Ligand Exchange of Gold Nanoparticles with Thiol-terminated Polystyrene† [J]. Chem. J. Chinese Universities, 2018, 39(3): 552. |
[8] | CHU Ming,ZHANG Jianfu,QU Lihang,LI Meiyuan,ZHU Dantong,LI Wenfei,YAO Zhanhai. Preparation and Properties of Grafted Polyethylene/GMS Grafted Modified SiO2 Blends† [J]. Chem. J. Chinese Universities, 2018, 39(12): 2781. |
[9] | YAN Yuwei,JIN Wei,ZHU Dan,ZHANG Tao,YING Yangwei,SHAN Jin,ZHANG Xuchen,YU Bingwen,CHEN Ting,LIU Chao,JIN Qinhan. Application of Kilowatt MPT-AES in Oil Analysis† [J]. Chem. J. Chinese Universities, 2018, 39(12): 2651. |
[10] | ZHANG Luyun, XU Qian, XIA Guangqing, CONG Li, WANG Yu, ZHANG Hui, ZHU Junyi, ZANG Hao. Synthesis and Biological Activity of Lipoic Acid Ester Derivatives† [J]. Chem. J. Chinese Universities, 2018, 39(10): 2198. |
[11] | ZHANG Chanchan, ZHANG Fanghui, DING Lei, NI Zhenjie, JIANG Lang, DONG Huanli, ZHANG Xiaotao, LI Rongjin, HU Wenping. Organic Phototransistor Based on Surface Plasmon Resonance Effect† [J]. Chem. J. Chinese Universities, 2018, 39(1): 102. |
[12] | HAN Na, WANG Xiufang, QU Tingsi, QIAN Yongqiang, LU Yahong. Preparation and Properties of Cellulose Benzoate and Preliminary Exploration About Cellulose Benzoate-g-polyoxyethylene(2) Hexadecyl Ether† [J]. Chem. J. Chinese Universities, 2017, 38(6): 1099. |
[13] | LI Hui, XING Zhe, LI Rong, ZHANG Mingxing, WANG Minglei, TAN Yizhe, WU Guozhong. Preparation of Cu2+-Chitosan Quaternary Ammonium Salt-g-Poly(acrylicacid) with Efficient Antibacterial Activity [J]. Chem. J. Chinese Universities, 2017, 38(5): 902. |
[14] | WANG Xinchen, YANG Meiling, ZHANG Xiaoping. Rapid Qualitative Analysis of Active Molecules in Tablets Using Microwave Plasma Torch Mass Spectrometry by the Regulation of Power† [J]. Chem. J. Chinese Universities, 2017, 38(4): 561. |
[15] | LIU Zhi, LI Bingrui, PAN Yanxiong, SHI Kai, WANG Weicai, PENG Chao, WANG Zhe, JI Xiangling. Adsorption Behavior of Hydrophilic Luffa Sponges to Heavy Metal Ions in Water System† [J]. Chem. J. Chinese Universities, 2017, 38(4): 669. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||