高等学校化学学报

• 研究论文 • 上一篇    下一篇

Ti3C2Tx/TiO2光电极的等离激元分解水性能研究

陈梦佳,桑丽霞,李扬扬   

  1. 北京工业大学传热与能源利用北京市重点实验室
  • 收稿日期:2025-11-12 修回日期:2026-01-15 网络首发:2026-01-24 发布日期:2026-01-24
  • 通讯作者: 桑丽霞 E-mail:sanglixia@bjut.edu.cn
  • 基金资助:

    国家自然科学基金(批准号:52176174)资助


Plasmonic Solar Water Splitting Performance of Ti3C2Tx/TiO2 Photoelectrode

CHEN Mengjia, SANG Lixia*, LI Yangyang   

  1. Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology
  • Received:2025-11-12 Revised:2026-01-15 Online First:2026-01-24 Published:2026-01-24
  • Contact: Li-Xia SANG E-mail:sanglixia@bjut.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China(No.52176174)

摘要: 本研究通过旋涂法将具有高导电性与局域表面等离激元共振(LSPR)效应的Ti3C2Tx纳米片与金红石型TiO2纳米棒阵列复合,构建了Ti3C2Tx/TiO2肖特基结光电极。通过XRD,XPS,SEM和TEM等表征结果证实了Ti3C2Tx的成功制备及其在TiO2表面的均匀负载。光电测试结果表明,优化Ti3C2Tx旋涂体积后的复合材料(MT-200)在AM 1.5G光照条件下的光电流密度达到1.21 mA/cm2,较纯TiO2提升了51.9%。性能提升归因于Ti3C2Tx与TiO2界面形成的肖特基结有效促进了光生电荷的分离。同时,Ti3C2Tx本身所固有的LSPR特性为复合材料引入了等离激元激发能力,其诱导产生的光热效应进一步加速了界面反应动力学与载流子传输。

关键词: Ti3C2Tx, 局域表面等离激元共振, 肖特基结, 光电化学分解水

Abstract: Developing high-performance photoelectrodes is crucial for advancing solar energy conversion. This study aims to construct an efficient Schottky junction photoanode by integrating Ti3C2Tx MXene nanosheets with rutile TiO2 nanorod arrays (NRs) to synergistically enhance charge separation and light harvesting. The Ti3C2Tx/TiO2 composite was fabricated by spin-coating Ti3C2Tx nanosheets, known for their high conductivity and localized surface plasmon resonance (LSPR), onto hydrothermally grown TiO2 NRs. Material characterization techniques, including XRD, XPS, SEM, and TEM, confirmed the successful preparation of Ti3C2Tx and its uniform deposition on the TiO2. Photoelectrochemical (PEC) tests revealed that the optimized composite (MT-200) achieved a significant photocurrent density of 1.21 mA/cm2 under AM 1.5G illumination, which represents a 51.9% enhancement compared to pristine TiO2. This performance improvement is attributed to two primary factors. First, the intimate interface between Ti3C2Tx and TiO2 forms an effective Schottky junction, which significantly promotes the separation of photogenerated electron-hole pairs. Second, the intrinsic LSPR property of Ti3C2Tx endows the composite with plasmonic excitation capability. The associated photothermal effect locally elevates the temperature at the reaction interface, thereby further accelerating interfacial reaction kinetics and boosting charge carrier transport. This work demonstrates a promising strategy for enhanced PEC performance through the synergistic integration of Schottky junction and plasmonic effects in a Ti3C2Tx/TiO2 heterostructure.

Key words: Ti3C2Tx, Localized surface plasmon resonance; Schottky junction, Photoelectrochemical water splitting

中图分类号: 

TrendMD: