高等学校化学学报 ›› 2024, Vol. 45 ›› Issue (11): 20240355.doi: 10.7503/cjcu20240355

• 研究论文 • 上一篇    下一篇

利用无标记单细胞蛋白质组学方法构建小鼠外周血单个核细胞的细胞图谱

黄玉滢1,2, 于成鲲1,2, 刘斯奇2,3, 任艳2,4()   

  1. 1.浙江工业大学药学院,杭州 310000
    2.中国科学院杭州医学研究所,杭州 310000
    3.华大基因科技有限公司,深圳 518000
    4.上海中医药大学科技实验中心,上海 200120
  • 收稿日期:2024-07-15 出版日期:2024-11-10 发布日期:2024-09-02
  • 通讯作者: 任艳 E-mail:reny@genomics.cn
  • 基金资助:
    国家自然科学基金(32371500)

Cell Map of Mouse Peripheral Blood Mononuclear Cells with a Label-free Single-cell Proteomics Method

HUANG Yuying1,2, YU Chengkun1,2, LIU Siqi2,3, REN Yan2,4()   

  1. 1.College of Pharmacy Science,Zhejiang University of Technology,Hangzhou 310000,China
    2.Hangzhou Institute of Medicine,Chinese Academy of Sciences,Hangzhou 310000,China
    3.Beijing Genomics Institute Technology Co. ,Ltd. ,Shenzhen 518000,China
    4.Science and Technology Experimental Center,Shanghai University of Traditional Chinese Medicine,Shanghai 200120,China
  • Received:2024-07-15 Online:2024-11-10 Published:2024-09-02
  • Contact: REN Yan E-mail:reny@genomics.cn
  • Supported by:
    the National Natural Science Foundation of China(32371500)

摘要:

采用抗体荧光标记法分离出T细胞、 B细胞、 自然杀伤细胞和树突状细胞. 使用CellenONE单细胞分选系统分选出相应的单细胞, 在分选过程中应用了质谱兼容的肽段包被单细胞蛋白质组学(Mad-CASP)技术. 将高疏水性肽段预先加入至分选的孔板中, 从而减少了蛋白在孔板和色谱柱上的吸附. 提取出单细胞蛋白并进行酶解, 采用液相色谱-质谱联用(LC-MS/MS)技术对获得的肽段进行数据采集, 并利用Maxquant软件中的谱图库及“运行中匹配”功能进行了蛋白质的搜库鉴定. 采用维恩图和统一流形近似与投影(UMAP)技术分析了 4种细胞的蛋白表达差异, 对细胞的特异性蛋白进行了分子特征数据库小鼠免疫通路富集, 并对计数排序前2名的通路进行了分析, 同时利用模糊C均值聚类方法和京都大学基因与基因组数据库(KEGG)通路富集分析了免疫细胞共享蛋白定量值的变化, 绘制了专属于小鼠外周血单个核细胞的单细胞蛋白质组学图谱. 研究结果对深入理解免疫细胞的功能特征和发现疾病相关的关键蛋白标记物具有重要价值.

关键词: 小鼠外周血单个核细胞, 质谱兼容的肽段包被单细胞蛋白质组学, 细胞图谱

Abstract:

Fluorescently labeled antibodies were used to isolate T cells, B cells, natural killer cells, and dendritic cells. Single cells were then sorted using the CellenONE single-cell sorting system. During the sorting process, an approach of mass-adaptive coating-assisted single-cell proteomics(Mad-CASP) was pre-added to the wells of the sorting plate to reduce subsequent protein adsorption to the plate and chromatography column. The single-cell proteins were extracted and digested, and the resulting peptides were analyzed using a liquid chromatography-tandem mass spectrometry(LC-MS/MS). Protein identification was conducted using the Maxquant software’s spectral library function in combination with the "match-between-runs" feature. Venn diagrams and UMAP(Uniform manifold approximation and projection) were employed to analyze the protein expression differences among the four cell types. The specific proteins of each cell type were subjected to molecular signature database mouse immune pathway enrichment, with the top two pathways selected for further analysis. Simultaneously, fuzzy C-means clustering and KEGG(Kyoto encyclopedia of genes and genomes) pathway enrichment were used to analyze the quantitative changes of shared proteins among immune cells. Finally, a single-cell proteomics map specifically for mouse peripheral blood mononuclear cells was generated, providing significant insights into understanding the functional characteristics of immune cells and identifying key protein markers related to diseases.

Key words: Mouse peripheral blood mononuclear cells, Mass-adaptive coating-assisted single-cell proteomics, Cell map

中图分类号: 

TrendMD: