高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (4): 20220598.doi: 10.7503/cjcu20220598

• 物理化学 • 上一篇    下一篇

活性炭电极的改性及对Co2+, Mn2+和Ni2+的电吸附性能

陈佳琪1,2, 程晚亭1,2, 温秋慧1, 韩静茹2, 马福秋1,2, 颜永得1,2, 薛云1,2()   

  1. 1.哈尔滨工程大学烟台研究院, 烟台 264006
    2.哈尔滨工程大学核科学与技术学院, 哈尔滨 150001
  • 收稿日期:2022-09-07 出版日期:2023-04-10 发布日期:2022-11-15
  • 通讯作者: 薛云 E-mail:xueyun@hrbeu.edu.cn
  • 基金资助:
    烟台市科技创新发展计划项目(2021MSGY029);中央高校基本科研业务费专项资金(3072022JC2703);烟台市校地融合发展项目(2020XDRHXMPT36)

Modification of Activated Carbon Electrode for Efficient Electrosorption of Co2+, Mn2+ and Ni2+

CHEN Jiaqi1,2, CHENG Wanting1,2, WEN Qiuhui1, HAN Jingru2, MA Fuqiu1,2, YAN Yongde1,2, XUE Yun1,2()   

  1. 1.Yantai Research Institute,Harbin Engineering University,Yantai 264006,China
    2.College of Nuclear Science and Technology,Harbin Engineering University,Harbin 150001,China
  • Received:2022-09-07 Online:2023-04-10 Published:2022-11-15
  • Contact: XUE Yun E-mail:xueyun@hrbeu.edu.cn
  • Supported by:
    the Yantai Science and Technology Planning Project, China(2021MSGY029);the Fundamental Research Funds for the Central Universities, China(3072022JC2703);the University and Local Integration Development Project of Yantai City, China(2020XDRHXMPT36)

摘要:

以商用活性炭(AC)为原料, 分别采用磷酸和氢氧化钠改性的方法制备了两种不同的改性活性炭电极材料. 采用扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 Brunauer-Emmett-Teller(BET)测试、 傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)等手段以及电化学分析方法, 对改性前后活性炭材料的表面性质和电化学性能进行了探究. 结果表明, H3PO4改性使活性炭的孔隙分布更加密集, NaOH改性使活性炭表面的孔隙结构更加清晰均匀; H3PO4和NaOH改性均使活性炭的比表面积增加. 循环伏安测试结果表明, 改性前后活性炭电极在低扫描速率下均具备良好的双电层特性, 并且两种改性处理均能提高活性炭电极的比电容; 当扫描速率为5 mV/s时, 未改性、 H3PO4以及NaOH改性活性炭电极的比电容分别为36.51, 77.25和85.19 F/g. 电吸附实验结果证明, 两种改性活性炭电极对Co2+, Mn2+和Ni2+均有较好的去除效果, 电吸附过程均更加符合Langmuir模型, 在初始浓度、 电压和pH相同的条件下, NaOH改性电极对Co2+, Mn2+和Ni2+具有更高的去除率和吸附容量, 去除率可分别达到96.84%, 94.37%和96.90%, 吸附容量分别为140.8, 111.4和108.5 mg/g.

关键词: 活性炭, 改性, 电吸附, Co2+, Mn2+, Ni2+

Abstract:

Two different modified activated carbon(AC) electrode materials were prepared by modification with H3PO4 and NaOH using commercial AC as raw material. The surface properties and electrochemical properties of the AC before and after modification were investigated using scanning electron microscope(SEM), transmission electron microscope(TEM), BrunauerEmmettTeller(BET) test, Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS) and electrochemical analysis. The results showed that the H3PO4 modification made the pore distribution of AC denser, and the NaOH modification made the pore structure on the surface of AC more clearer and uniform. The specific surface area of the original AC was increased after modification with H3PO4 and NaOH. Moreover, the content of oxygen-containing functional groups of AC was significantly increased by H3PO4 and NaOH modifications. The cyclic voltammetry results showed that both modification treatments improved the specific capacitance of the AC electrode. When the scanning rate was 5 mV/s, the specific capacitances of unmodified, H3PO4 and NaOH modified AC electrodes were 36.51, 77.25 and 85.19 F/g, respectively. The experimental results of electrosorption experiments demonstrate that both modified AC electrodes had excellent removal effects on Co2+, Mn2+ and Ni2+, and the electrosorption processes were more consistent with the Langmuir model. Under the same experimental conditions, the NaOH-modified electrode had higher removal rates and adsorption capacities for Co2+, Mn2+ and Ni2+. The removal rates could reach 96.84%, 94.37% and 96.90% , respectively, and the adsorption capacities were 140.8, 111.4 and 108.5 mg/g, respectively. This work indicates the potential application of modified AC electrodes and electrosorption in the efficient remediation of Co2+, Mn2+ and Ni2+.

Key words: Activated carbon, Modification, Electrosorption, Co2+, Mn2+, Ni2+

中图分类号: 

TrendMD: