高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (7): 2103.doi: 10.7503/cjcu20210116
收稿日期:
2021-02-26
出版日期:
2021-07-10
发布日期:
2021-05-20
通讯作者:
胡茜茜
E-mail:xxhu@nju.edu.cn;dqxie@nju.edu.cn
作者简介:
谢代前, 男, 博士, 教授, 主要从事分子反应动力学理论研究. E-mail: 基金资助:
AN Feng1, HU Xixi2(), XIE Daiqian1(
)
Received:
2021-02-26
Online:
2021-07-10
Published:
2021-05-20
Contact:
HU Xixi
E-mail:xxhu@nju.edu.cn;dqxie@nju.edu.cn
Supported by:
摘要:
涉及非绝热跃迁的众多碰撞传能过程在大气、 星际、 燃烧化学以及化学激光中都起着至关重要的作用. 这类传能过程通常涉及到多个电子态, 包含多种非绝热效应, 使得理论研究中的透热势能面构建和动力学计算都极具挑战. 本文以
中图分类号:
TrendMD:
安丰, 胡茜茜, 谢代前. 三原子分子非绝热传能动力学的研究进展. 高等学校化学学报, 2021, 42(7): 2103.
AN Feng, HU Xixi, XIE Daiqian. Research Advances on Nonadiabatic Energy Transfer Dynamics for Triatomic Molecules. Chem. J. Chinese Universities, 2021, 42(7): 2103.
Fig.1 Potential energy curves of the ground and low?lying excited states of the C+N2 collisions in collinear(A) and perpendicular(B) approaches, contour plots of the adiabatic potential energy surfaces(PESs) averaged over the two triplet states 23A" and 13A′(C) and two singlet states 11A′ and 11A"(D)[1](A, B) For each distance R(1 ?=0.1 nm), the r distance is optimized. (C, D) The distance r is optimized for each(R, γ). The contour intervals are 0.5 eV. The crossing seam between the triplet and singlet adiabatic PESs is illustrated by a solid black line. Copyright 2019, Royal Society of Chemistry.
Fig.2 Contour of the 1D component of a resonance wavefunction(J=0) at 0.284 eV of collision energy overlaid on the PES of the 1D state[1]The Jacobi angle is fixed at 0°.Copyright 2019, Royal Society of Chemistry.
Fig.3 Rate constants for the C(1D)+N2(v=0, j=0)→C(3P)+N2(v', j') quenching reaction as a function of temperature[1]Expt.1—3 are data from Hickson et al.[18](red circles), Husain et al.[20] (cyan square) and Braun et al.[19](blue diamond). Theo.1—2 were obtained with the collinear(red line) and spherical(blue line) models[18]. Copyright 2019, Royal Society of Chemistry.
Fig.4 Cuts of PESs for the relevant electronic states with γ fixed at 0° and r fixed at 1.210 ?(1 ?=0.1 nm) without(A) and with(B) SO couplings[6]The CI between the 2Π and 2Δ states (black dot) in Pel (A) becomes three CIs in Pel (B). The energy is referenced to the I(2P)+O2(X3Σg–) asymptote. Copyright 2020, American Chemical Society.
Fig.5 Comparison of the calculated rate coefficient for reaction(11) with experimental and previous theoretical results as a function of temperature[6]Copyright 2020, American Chemical Society.
Fig.6 J=0 reaction probability as a function of the collision energy with derivative coupling and without derivative coupling[6]Copyright 2020, American Chemical Society.
1 | An F., Han S., Hu X., Xie D., Guo H., Phys. Chem. Chem. Phys., 2019, 21(17), 8645—8653 |
2 | Han S., Zheng X., Ndengué S., Song Y., Dawes R., Xie D., Zhang J., Guo H., Sci. Adv., 2019, 5(1), eaau0582 |
3 | Jiang B., Xie D., Guo H., J. Chem. Phys., 2011, 134(23), 231103 |
4 | Jiang B., Xie D., Guo H., J. Chem. Phys., 2012, 136(3), 034302 |
5 | Zhou L., Xie D., Guo H., J. Chem. Phys., 2015, 142(12), 124317 |
6 | An F., Chen J., Hu X., Guo H., Xie D., J. Phys. Chem. Lett., 2020, 11(12), 4768—4773 |
7 | Bender C. F., O'Neil S. V., Pearson P. K., Schaefer H. F., Science, 1972, 176(4042), 1412—1414 |
8 | Alexander M. H., Capecchi G., Werner H. J., Science, 2002, 296(5568), 715—718 |
9 | Juanes⁃Marcos J. C., Althorpe S. C., Wrede E., Science, 2005, 309(5738), 1227—1230 |
10 | Wang X., Dong W., Xiao C., Che L., Ren Z., Dai D., Wang X., Casavecchia P., Yang X., Jiang B., Xie D., Sun Z., Lee S. Y., Zhang D. H., Werner H. J., Alexander M. H., Science, 2008, 322(5901), 573—576 |
11 | Yang T., Chen J., Huang L., Wang T., Xiao C., Sun Z., Dai D., Yang X., Zhang D. H., Science, 2015, 347(6217), 60—63 |
12 | Yuan D., Guan Y., Chen W., Zhao H., Yu S., Luo C., Tan Y., Xie T., Wang X., Sun Z., Zhang D. H., Yang X., Science, 2018, 362(6420), 1289—1293 |
13 | Chang Y., Yu Y., Wang H., Hu X., Li Q., Yang J., Su S., He Z., Chen Z., Che L., Wang X., Zhang W., Wu G., Xie D., Ashfold M. N. R., Yuan K., Yang X., Nat. Commun., 2019, 10(1), 1250 |
14 | Xie Y., Zhao H., Wang Y., Huang Y., Wang T., Xu X., Xiao C., Sun Z., Zhang D. H., Yang X., Science, 2020, 368(6492), 767—771 |
15 | Jiang B., Xie C., Xie D., J. Chem. Phys., 2011, 134(11), 114301 |
16 | Jiang B., Xie C., Xie D., J. Chem. Phys., 2011, 135(16), 164311 |
17 | Xie C., Jiang B., Xie D., Sun Z., J. Chem. Phys., 2012, 136(11), 114310 |
18 | Hickson K. M., Loison J. C., Lique F., Kłos J., J. Phys. Chem. A, 2016, 120(16), 2504—2513 |
19 | Braun W., Bass A. M., Davis D. D., Simmons J. D., Proc. Royal Soc. A, 1969, 312(1510), 417—434 |
20 | Husain D., Kirsch L. J., Chem. Phys. Lett., 1971, 9, 412—415 |
21 | Fontana P. R., Phys. Rev., 1962, 125(1), 220—228 |
22 | Walker T. E. H., Richards W. G., Phys. Rev., 1969, 177(1), 100—101 |
23 | Berning A., Schweizer M., Werner H. J., Knowles P. J., Palmieri P., Mol. Phys., 2000, 98(21), 1823—1833 |
24 | Bearpark M. J., Handy N. C., Palmieri P., Tarroni R., Mol. Phys., 1993, 80(3), 479—502 |
25 | Yarkony D. R., Int. Rev. Phys. Chem., 1992, 11(2), 195—242 |
26 | Alexander M. H., Manolopoulos D. E., Werner H. J., J. Chem. Phys., 2000, 113, 11084—11100 |
27 | Alexander M. H., Capecchi G., Werner H. J., Faraday Discuss., 2004, 127, 59—72 |
28 | Lefebvre⁃Brion H., Field R. W., Perturbations in the Spectra of Diatomic Molecules., Academic Press, Orlando, 1986 |
29 | Werner H. J., Follmeg B., Alexander M. H., J. Chem. Phys., 1988, 89(5), 3139—3151 |
30 | Alexander M. H., Corey G. C., J. Chem. Phys., 1986, 84(1), 100—113 |
31 | Blanco M. A., Flórez M., Bermejo M., J. Mol. Struc. Theochem., 1997, 419(1—3), 19—27 |
32 | Jiang B., Guo H., J. Chem. Phys., 2013, 139, 054112 |
33 | Li J., Jiang B., Guo H., J. Chem. Phys., 2013, 139, 204103 |
34 | Deakin J. J., Husain D., J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1603—1612 |
35 | Derwent R. G., Thrush B. A., Faraday Discuss. Chem. Soc., 1972, 53, 162—167 |
36 | Burde D. H., McFarlane R. A., Wiesenfeld J. R., Phys. Rev. A, 1974, 10(6), 1917—1920 |
37 | Young A. T., Houston P. L., J. Chem. Phys., 1983, 78(5), 2317—2326 |
38 | Burde D. H., Yang T. T., McFarlane R. A., Chem. Phys. Lett., 1993, 205(1), 69—74 |
39 | Marter T. V., Heaven M. C., J. Chem. Phys., 1998, 109(21), 9266—9271 |
40 | Marter T. V., Heaven M. C., Plummer D., Chem. Phys. Lett., 1996, 260(1), 201—207 |
41 | Copeland D. A., Bauer A. H., IEEE J. Quan. Electron., 1993, 29(9), 2525—2539 |
42 | Kaledin A. L., Heaven M. C., Morokuma K., Chem. Phys. Lett., 1998, 289(1), 110—117 |
43 | Kaledin A. L., Heaven M. C., Morokuma K., J. Chem. Phys., 2001, 114(1), 215—224 |
44 | Hobey W. D., McLachlan A. D., J. Chem. Phys., 1960, 33(6), 1695—1703 |
45 | Smith F. T., Phys. Rev., 1969, 179(1), 111—123 |
46 | Naskar K., Mukherjee S., Mukherjee B., Ravi S., Mukherjee S., Sardar S., Adhikari S., J. Chem. Theory Comput., 2020, 16(3), 1666—1680 |
47 | Heumann B., Weide K., Düren R., Schinke R., J. Chem. Phys., 1993, 98(7), 5508—5525 |
48 | Simah D., Hartke B., Werner H. J., J. Chem. Phys., 1999, 111(10), 4523—4534 |
49 | Dobbyn A. J., Knowles P. J., Mol. Phys., 1997, 91(6), 1107—1124 |
50 | Harrevelt R. V., Hemert M. C. V., J. Chem. Phys., 2000, 112(13), 5787—5808 |
51 | Cave R. J., Newton M. D., Chem. Phys. Lett., 1996, 249(1), 15—19 |
52 | Cave R. J., Newton M. D., J. Chem. Phys., 1997, 106(22), 9213—9226 |
53 | Han S., Wang Y., Guan Y., Yarkony D. R., Guo H., J. Chem. Theory Comput., 2020, 16(11), 6776—6784 |
54 | Hong Y., Yin Z., Guan Y., Zhang Z., Fu B., Zhang D. H., J. Phys. Chem. Lett., 2020, 11(18), 7552—7558 |
55 | Yin Z., Braams B. J., Fu B., Zhang D. H., J. Chem. Theo. Comput., 2021, 17(3), 1678—1690 |
56 | Jornet-Somoza J., Lasorne B., Robb M. A., Meyer H. D., Lauvergnat D., Gatti F., J. Chem. Phys., 2012, 137(8), 084304 |
57 | Lenzen T., Manthe U., J. Chem. Phys., 2017, 147(8), 084105 |
58 | Viel A., Eisfeld W., J. Chem. Phys., 2004, 120(10), 4603—4613 |
[1] | 李维唐, 任佳骏, 帅志刚. 含时密度矩阵重正化群的理论与应用[J]. 高等学校化学学报, 2021, 42(7): 2085. |
[2] | 商辰尧, 张东辉. 基本不变量神经网络解析梯度方法的研究[J]. 高等学校化学学报, 2021, 42(7): 2146. |
[3] | 边文生, 曹剑炜. PBFC-PI量子动力学方法及应用[J]. 高等学校化学学报, 2021, 42(7): 2123. |
[4] | 白旭, 韩超英, 朱华. 范德华复合物Kr-C2H2的势能面和振转光谱的理论研究[J]. 高等学校化学学报, 2019, 40(8): 1649. |
[5] | 曲泽星, 高加力. 多组态密度泛函理论及透热与绝热势能面的构建[J]. 高等学校化学学报, 2015, 36(11): 2236. |
[6] | 胡茜茜, 杨俊英, 谢代前. 反应N+NH→N2+H的态-态量子动力学研究[J]. 高等学校化学学报, 2015, 36(11): 2198. |
[7] | 张志红, 雷鹏. 准经典轨线方法对Ca+CD3I→CaI+CD3同位素效应的动力学研究[J]. 高等学校化学学报, 2013, 34(6): 1450. |
[8] | 高斯萌, 贺海鹏, 丁益宏. SnAl4-和PbAl4-: 新型平面四配位分子[J]. 高等学校化学学报, 2013, 34(1): 185. |
[9] | 慈成刚, 段雪梅, 刘靖尧, 孙家钟. 乙醇醛光解离机理的理论研究[J]. 高等学校化学学报, 2011, 32(7): 1588. |
[10] | 邵长斌, 金林, 丁益宏. B4O分子异构化稳定性的理论研究[J]. 高等学校化学学报, 2010, 31(2): 348. |
[11] | 谢长建, 陈容, 朱华, 谢代前. Ne-CO2的从头算势能面及微波光谱[J]. 高等学校化学学报, 2009, 30(9): 1851. |
[12] | 张文斌, 石国升, 丁益宏, 孙家锺. SnCNN: 一个包含SnC三重键的分子[J]. 高等学校化学学报, 2009, 30(7): 1427. |
[13] | 石国升, 丁益宏. H2NO·自由基和顺-2-丁烯反应机理的理论研究[J]. 高等学校化学学报, 2009, 30(2): 382. |
[14] | 周中军, 刘慧玲, 黄旭日, 孙家锺. 预测[C,O,S]体系的稳定异构体[J]. 高等学校化学学报, 2008, 29(8): 1641. |
[15] | 迟绍明,王宁,马丽英,方芳,田国才,李国宝,徐四川 . NO3-+Cl2→ClONO2+Cl-反应势能面和势能阱[J]. 高等学校化学学报, 2008, 29(6): 1228. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||