高等学校化学学报 ›› 2018, Vol. 39 ›› Issue (10): 2113.doi: 10.7503/cjcu20180516
收稿日期:2018-07-23
出版日期:2018-09-04
发布日期:2018-09-04
作者简介:联系人简介: 岳 岭, 男, 博士, 讲师, 主要从事化学发光理论计算研究. E-mail: heartstar@mail.xjtu.edu.cn;刘亚军, 男, 博士, 教授, 博士生导师, 主要从事理论与计算光化学研究. E-mail:
基金资助:Received:2018-07-23
Online:2018-09-04
Published:2018-09-04
Contact:
YUE Ling,LIU Yajun
E-mail:yajun.liu@bnu.edu.cn
Supported by:摘要:
化学发光反应是一类特殊的激发态化学反应, 在化学分析和生活中具有广泛应用. 本文介绍了轨线面跳跃非绝热动力学方法模拟化学发光反应的一般原理和关键的技术, 包括初始采样、 势能和力的计算方法以及含时和不含时策略中跃迁概率的计算以及动力学模拟过程.
中图分类号:
TrendMD:
岳岭, 刘亚军. 轨线面跳跃方法模拟有机过氧化物化学发光原理及关键问题. 高等学校化学学报, 2018, 39(10): 2113.
YUE Ling,LIU Yajun. Basic Theory and Critical Problems in the Trajectory Surface Hopping Simulations on the Chemiluminescent Reaction of Organic Peroxides†. Chem. J. Chinese Universities, 2018, 39(10): 2113.
| [1] | Specht W., Angew. Chem., 1937, 50(8), 155—157 |
| [2] | Gleu K., Petsch W., Angew. Chem., 1935, 48(3), 57—59 |
| [3] | Roda A., Chemiluminescence and Bioluminescence Past, Present and Future, The Royal Society of Chemistry,Cambridge, 2011 |
| [4] | Albrecht H.O., Z.Phys. Chem., 1928, A136, 321—330 |
| [5] | Matsumoto M., J. Photochem. Photobiol., C-Photochem. Rev., 2004, 5(1), 27—53 |
| [6] | Schuster G.B., Acc. Chem. Res., 1979, 12(10), 366—373 |
| [7] | Adam W., Kazakov D.V., Kazakov V. P., Chem. Rev., 2005, 105(9), 3371—3387 |
| [8] | Koo J.Y., Schuster G. B., J. Am. Chem. Soc., 1977, 99(18), 6107—6109 |
| [9] | Vacher M., Fdez Galván I., Ding B.W., Schramm S., Berraud-Pache R., Naumov P., Ferré N., Liu Y. J., Navizet I., Roca-Sanjuán D., Baader W. J., Lindh R., Chem. Rev., 2018, 118(15), 6927—6974 |
| [10] | Turro N.J., Lechtken P., J. Am. Chem. Soc., 1973, 95(1), 264—266 |
| [11] | Richardson W.H., Montgomery F. C., Yelvington M. B., O’Neal H. E., J. Am. Chem. Soc., 1974, 96(24), 7525—7532 |
| [12] | Adam W., Baader W.J., J. Am. Chem. Soc., 1985, 107(2), 410—416 |
| [13] | Richardson W.H., J. Org. Chem., 1989, 54(19), 4677—4684 |
| [14] | de Vico L., Liu Y. J., Krogh J. W., Lindh R., J. Phys. Chem.A, 2007, 111(32), 8013—8019 |
| [15] | Liu F., Liu Y.J., de Vico L., Lindh R., J. Am. Chem. Soc., 2009, 131(17), 6181—6188 |
| [16] | Catalani L.H., Wilson T., J. Am. Chem. Soc., 1989, 111(7), 2633—2639 |
| [17] | McCapra F., J. Photochem. Photobiol. A:Chem., 1990, 51(1), 21—28 |
| [18] | Yu T., Tsunaki T., Hiroshi I., Yasunori Y., Kizashi Y., Isao S., Bull. Chem. Soc.Jpn., 1999, 72(2), 213—225 |
| [19] | Isobe H., Takano Y., Okumura M., Kuramitsu S., Yamaguchi K., J. Am. Chem. Soc., 2005, 127(24), 8667—8679 |
| [20] | Min C.G., Leng Y., Yang X. K., Ren A. M., Cui X. Y., Xu M. L., Wang S. H.,Chem. Res. Chinese Universities, 2013, 29(5), 982—985 |
| [21] | Zhang Y., Chen L., Ju W., Xu Y., Chem. Res. Chinese Universities, 2014, 30(2), 194—199 |
| [22] | Wang X., Han B., Gao Y., Wang L., Bai M., Chem. Res. Chinese Universities, 2016, 32(3), 325—328 |
| [23] | Min C.G., Leng Y., Yang X. K., Huang S. J., Ren A. M., Chem. J. Chinese Universities, 2014, 35(3), 564—569 |
| (闵春刚, 冷艳, 杨喜昆, 黄绍军, 任爱民. 高等学校化学学报, 2014, 35(3), 564—569) | |
| [24] | Yue L., Liu Y.J., Fang W. H., J. Am. Chem. Soc., 2012, 134(28), 11632—11639 |
| [25] | Yue L., Liu Y.J., J. Chem. Theory Comput., 2013, 9(5), 2300—2312 |
| [26] | Maltsev O.V., Yue L., Rebarz M., Hintermann L., Sliwa M., Ruckebusch C., Pejov L., Liu Y. J., Naumov P., Chem. Eur. J., 2014, 20(34), 10782—10790 |
| [27] | Lan Z., Shao J., Prog. Chem., 2012, 24(6), 1105—1119 |
| (兰峥岗, 邵久书. 化学进展, 2012, 24(6), 1105—1119) | |
| [28] | Tully J.C., Preston R. K., J. Chem. Phys., 1971, 55(2), 562—572 |
| [29] | Bunker D.L., Classical Trajectory Methods. Methods in Computational Physics: Advances in Research and Applications, Academic Press, New York, 1971, 287—325 |
| [30] | Dahl J.P., Springborg M., J. Chem. Phys., 1988, 88(7), 4535—4547 |
| [31] | Barbatti M., Aquino A.J. A., Lischka H., Phys. Chem. Chem. Phys., 2010, 12(19), 4959—4967 |
| [32] | Per S., Anders H., Björn R., Bernard L., Phys. Scr., 1980, 21(3/4), 323—327 |
| [33] | Roos B.O., Taylor P. R., Siegbahn P. E. M., Chem. Phys., 1980, 48(2), 157—173 |
| [34] | Parr R.G., Annu. Rev. Phys. Chem., 1983, 34(1), 631—656 |
| [35] | Runge E., Gross E.K. U., Phys. Rev. Lett., 1984, 52(12), 997—1000 |
| [36] | Hirata S., Head-Gordon M., Chem. Phys. Lett., 1999, 314(3/4), 291—299 |
| [37] | Marques M.A. L., Gross E. K. U., Annu. Rev. Phys. Chem., 2004, 55(1), 427—455 |
| [38] | Wang F., Ziegler T., J. Chem. Phys., 2004, 121(24), 12191—12196 |
| [39] | Burke K., Werschnik J., Gross E.K. U., J. Chem. Phys., 2005, 123(6), 062206 |
| [40] | Dreuw A., Head-Gordon M., Chem. Rev., 2005, 105(11), 4009—4037 |
| [41] | Yue L., Roca-Sanjuán D., Lindh R., Ferré N., Liu Y.J., J. Chem. Theory Comput., 2012, 8(11), 4359—4363 |
| [42] | Krylov A.I., Chem. Phys. Lett., 2001, 350(5/6), 522—530 |
| [43] | Sears J.S., Sherrill C. D., Krylov A. I., J. Chem. Phys., 2003, 118(20), 9084—9094 |
| [44] | Shao Y., Head-Gordon M., Krylov A.I., J. Chem. Phys., 2003, 118(11), 4807—4818 |
| [45] | Rinkevicius Z., Ågren H., Chem. Phys. Lett., 2010, 491(4—6), 132—135 |
| [46] | Rinkevicius Z., Vahtras O., Ågren H., J. Chem. Phys., 2010, 133(11), 114104 |
| [47] | Bernard Y.A., Shao Y., Krylov A. I., J. Chem. Phys., 2012, 136(20), 204103 |
| [48] | Zhang X., Herbert J.M., J. Chem. Phys., 2015, 143(23), 234107 |
| [49] | Slipchenko L.V., Krylov A. I., J. Chem. Phys., 2003, 118(15), 6874—6883 |
| [50] | Minezawa N., Gordon M.S., J. Phys. Chem.A, 2009, 113(46), 12749—12753 |
| [51] | Yue L., Lan Z., Liu Y.J., J. Phys. Chem. Lett., 2015, 6(3), 540—548 |
| [52] | Li Z., Liu W., J. Chem. Phys., 2012, 136(2), 024107 |
| [53] | Koslowski A., Beck M.E., Thiel W., J. Comput. Chem., 2003, 24(6), 714—726 |
| [54] | Sastry K., Johnson D.D., Thompson A. L., Goldberg D. E., Martinez T. J., Leiding J., Owens J., Mater. Manuf.Processes, 2007, 22(5), 553—561 |
| [55] | Fabiano E., Keal T.W., Thiel W., Chem. Phys., 2008, 349(1—3), 334—347 |
| [56] | Silva-Junior M.R., Thiel W., J. Chem. Theory Comput., 2010, 6(5), 1546—1564 |
| [57] | Wu X., Koslowski A., Thiel W., J. Chem. Theory Comput., 2012, 8(7), 2272—2281 |
| [58] | Voityuk A.A., J. Chem. Theory Comput., 2014, 10(11), 4950—4958 |
| [59] | Goringe C.M., Bowler D. R., Hernández E., Rep. Prog. Phys., 1997, 60(12), 1447—1512 |
| [60] | Elstner M., Porezag D., Jungnickel G., Elsner J., Haugk M., Frauenheim T., Suhai S., Seifert G., Phys. Rev. B, 1998, 58(11), 7260—7268 |
| [61] | Köhler C., Seifert G., Gerstmann U., Elstner M., Overhof H., Frauenheim T., Phys. Chem. Chem.Phys., 2001, 3(23), 5109—5114 |
| [62] | Koskinen P., Mäkinen V., Comput. Mater. Sci., 2009, 47(1), 237—253 |
| [63] | Mitrić R., Werner U., Wohlgemuth M., Seifert G., Bonaci-Koutecký V., XJ. Phys. Chem. A, 2009, 113(45), 12700—12705 |
| [64] | Otte N., Scholten M., Thiel W., J. Phys. Chem. A, 2007, 111(26), 5751—5755 |
| [65] | Trani F., Scalmani G., Zheng G., Carnimeo I., Frisch M.J., Barone V., J. Chem. Theory Comput., 2011, 7(10), 3304—3313 |
| [66] | Yue L., Seifert G., Chang K., Zhang D.B., Phys. Rev.B, 2017, 96(20), 201403 |
| [67] | Niehaus T.A., Suhai S., Della Sala F., Lugli P., Elstner M., Seifert G., Frauenheim T., Phys. Rev.B, 2001, 63(8), 085108 |
| [68] | Stojanović L., Aziz S.G., Hilal R. H., Plasser F., Niehaus T. A., Barbatti M., J. Chem. Theory Comput., 2017, 13(12), 5846—5860 |
| [69] | Weber W., Thiel W., Theor. Chem. Acc., 2000, 103(6), 495—506 |
| [70] | Song C.I., Rhee Y. M., Int. J. Quantum. Chem., 2011, 111(15), 4091—4105 |
| [71] | Tiberio G., Muccioli L., Berardi R., Zannoni C., Chem. Phys. Chem., 2010, 11(5), 1018—1028 |
| [72] | Li Y., Hartke B., J. Chem. Phys., 2013, 139(22), 224303 |
| [73] | Tian Z., Wen J., Ma J., J. Chem. Phys., 2013, 139(1), 014706 |
| [74] | Domcke W., Yarkony D.R., Köppel H., Conical Intersections Electronic Structure, Dynamics and Spectroscopy, World Scientific,Singapore, 2004 |
| [75] | Pittner J., Lischka H., Barbatti M., Chem. Phys., 2009, 356(1—3), 147—152 |
| [76] | Werner U., Mitri-Koutecký V., Chem. Phys., 2008, 349(1—3), 319—324 |
| [77] | Tully J.C., Werner U., Mitrić R., Suzuki T., Bonacić-Koutecký V., J. Chem. Phys., 1990, 93(2), 1061—1071 |
| [78] | Fabiano E., Lan Z., Lu Y., Thiel W., Nonadiabatic Trajectory Calculations with Ab Initio and Semiempirical Methods, Conical Intersections: Theory, Computation and Experiment, World Scientific, Singapore, 2011, 463—496 |
| [79] | Barbatti M., Granucci G., Ruckenbauer M., Plasser F., Pittner J., Persico M., Lischka H., NEWTON-X: A Package for Newtonian Dynamics Close to the Crossing Seam, Version 1.4, Max-Plank-Institut Für Kohlenforschung, Mülheim, www.newtonx.org, 2013 |
| [80] | White E.H., Steinmetz M. G., Miano J. D., Wildes P. D., Morland R., J. Am. Chem. Soc., 1980, 102(9), 3199—3208 |
| [81] | Ding B.W., Liu Y. J., J. Am. Chem. Soc., 2017, 139(3), 1106—1119 |
| [82] | Vacher M., Brakestad A., Karlsson H.O., Fdez Galván I., Lindh R., J. Chem. Theory Comput., 2017, 13(6), 2448—2457 |
| [83] | Vacher M., Farahani P., Valentini A., Frutos L.M., Karlsson H. O., Fdez Galván I., Lindh R., J. Phys. Chem. Lett., 2017, 3790—3794 |
| [84] | Farahani P., Roca-Sanjuán D., Zapata F., Lindh R., J. Chem. Theory Comput., 2013, 9(12), 5404—5411 |
| [85] | Marian C.M., Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, 2(2), 187—203 |
| [86] | Cui G., Thiel W., J. Chem. Phys., 2014, 141(12), 124101 |
| [87] | Heß B.A., Marian C. M., Wahlgren U., Gropen O., Chem. Phys. Lett., 1996, 251(5), 365—371 |
| [88] | Marian C.M., Wahlgren U., Chem. Phys. Lett., 1996, 251(5), 357—364 |
| [89] | Richter M., Marquetand P., González-Vázquez J., Sola I., González L., J. Chem. Theory Comput., 2011, 7(5), 1253—1258 |
| [90] | Mai S., Marquetand P., González L., Int. J. Quantum.Chem., 2015, 115(18), 1215—1231 |
| [91] | Cederbaum L.S., Born-Oppenheimer Approximation and Beyond. Conical Intersections: Electronic Structure, Dynamics and Spectroscopy, World Scientific,Singapore, 2004, 3—40 |
| [92] | Zhu C., Teranishi Y., Nakamura H., Adv. Chem. Phys., 2001, 117, 127—233 |
| [93] | Zhu C., Nakamura H., J. Chem. Phys., 1997, 106(7), 2599—2611 |
| [94] | Zhu C., Nakamura H., J. Chem. Phys., 1997, 107(19), 7839—7848 |
| [95] | Child M.S., Pechukas P., Molecular Collision Theory, Academic Press, London, 1974 |
| [96] | Zhu C., Nakamura H., J. Chem. Phys., 1992, 97(11), 8497—8514 |
| [97] | Zhu C., Nakamura H., Re N., Aquilanti V., J. Chem. Phys., 1992, 97(3), 1892—1904 |
| [98] | Zhu C., Nakamura H., J. Chem. Phys., 1993, 98(8), 6208—6222 |
| [99] | Zhu C., Nakamura H., J. Chem. Phys., 1994, 101(6), 4855—4866 |
| [100] | Zhu C., Nakamura H., J. Chem. Phys., 1995, 102(19), 7448—7461 |
| [101] | Chaoyuan Z., J. Phys. A:Math. Gen., 1996, 29(6), 1293—1303 |
| [102] | Zhu C., J. Chem. Phys., 1996, 105(10), 4159—4172 |
| [103] | Zhu C., Nakamura H., Chem. Phys. Lett., 1996, 258(3), 342—347 |
| [104] | Zhu C., Kamisaka H., Nakamura H., J. Chem. Phys., 2001, 115(24), 11036—11039 |
| [105] | Zhu C., Nobusada K., Nakamura H., J. Chem. Phys., 2001, 115(7), 3031—3044 |
| [106] | Zhu C., Kamisaka H., Nakamura H., J. Chem. Phys., 2002, 116(8), 3234—3247 |
| [107] | Yu L., Xu C., Lei Y., Zhu C., Wen Z., Phys. Chem. Chem .Phys., 2014, 16(47), 25883—25895 |
| [108] | Xu C., Yu L., Zhu C., Yu J., J. Phys. Chemx. A, 2015, 119(42), 10441—10450 |
| [109] | Yu L., Xu C., Zhu C., Phys. Chem. Chem.Phys., 2015, 17(27), 17646—17660 |
| [110] | Gao W., Yu L., Zheng X., Lei Y., Zhu C., Han H., RSC Advances, 2016, 6(46), 39542—39552 |
| [111] | Lei Y., Wu H., Zheng X., Zhai G., Zhu C., J. Photochem. Photobiol. A:Chem., 2016, 317, 39—49 |
| [112] | Li C.X., Guo W. W., Xie B. B., Cui G., J. Chem. Phys., 2016, 145(7), 074308 |
| [113] | Xu C., Yu L., Zhu C., Yu J., Cao Z., Sci. Rep., 2016, 6, 26768 |
| [114] | Yin T.T., Zhao Z. X., Zhang H. X., RSC Advances, 2016, 6(83), 79879—79889 |
| [115] | Zheng X., Zhai G., Gao W., Lei Y., Yu L., Zhu C., Phys. Chem. Chem.Phys., 2016, 18(13), 8971—8979 |
| [116] | Gan Y., Yue L., Guo X., Zhu C., Cao Z., Phys. Chem. Chem.Phys., 2017, 19(19), 12094—12106 |
| [117] | Yue L., Yu L., Xu C., Lei Y., Liu Y., Zhu C., Chem. Phys. Chem., 2017, 18(10), 1274—1287 |
| [118] | Yang M., Huo C., Li A., Lei Y., Yu L., Zhu C., Phys. Chem. Chem.Phys., 2017, 19(19), 12185—12198 |
| [119] | Hu D., Xie Y., Li X., Li L., Lan Z., J. Phys. Chem. Lett., 2018, 9(11), 2725—2732 |
| [1] | 王瑞娜, 孙瑞粉, 钟添华, 池毓务. 大尺寸石墨烯量子点组装体的制备及电化学发光性能[J]. 高等学校化学学报, 2022, 43(8): 20220161. |
| [2] | 杜顺福, 王文经, EL-SAYED El-Sayed M., 苏孔钊, 袁大强, 洪茂椿. 一种具有化学发光性能的锆基金属有机四面体[J]. 高等学校化学学报, 2022, 43(1): 20210628. |
| [3] | 王博东, 潘美辰, 卓颖. 二氧化硅纳米颗粒表面原位还原银纳米簇电化学发光传感界面的构建与分子识别[J]. 高等学校化学学报, 2021, 42(11): 3519. |
| [4] | 廖妮, 张捷源, 黄梓阳, 赵晏汐, 柴雅琴, 袁若, 卓颖. 共晶诱导增强的电化学发光9,10-二苯基蒽-苝微晶构建高效尿酸传感器[J]. 高等学校化学学报, 2020, 41(9): 1989. |
| [5] | 曹芷源, 孙慧, 苏彬. 量子点电化学发光研究进展及展望[J]. 高等学校化学学报, 2020, 41(9): 1945. |
| [6] | 张晶晶, 金融, 方丹君, 江德臣. 电压调制型高灵敏电化学发光分析[J]. 高等学校化学学报, 2020, 41(11): 2421. |
| [7] | 陈景林, 曹小安, 刘永慧, 曾嘉仪, 任柯柯. 提取多维催化发光信号鉴别有害气体的传感器[J]. 高等学校化学学报, 2014, 35(6): 1166. |
| [8] | 王永红, 何晓晓, 王柯敏, 苏婧, 陈智峰, 晏根平. 基于MCM-41负载联吡啶钌的电致化学发光传感器[J]. 高等学校化学学报, 2012, 33(06): 1162. |
| [9] | 张艳, 郑行望. Ag/SiO2/Chitosan复合纳米粒子的合成及对六价铬吸附的分析应用[J]. 高等学校化学学报, 2012, 33(03): 481. |
| [10] | 孙颖 任爱民 李作盛 闵春刚 任雪峰 封继康. 海萤荧光素类似物发光反应机理的理论研究[J]. 高等学校化学学报, 2011, 32(11): 2586. |
| [11] | 张慧忠 , 聂菲, 吕九如. 一些含氮有机物在N-氯代丁二酰亚胺-二氯荧光素体系中的后化学发光反应[J]. 高等学校化学学报, 2010, 31(1): 51. |
| [12] | 刘彦明, 田伟. 毛细管电泳电致化学发光灵敏检测毒品类生物碱及在尿样分析中的应用[J]. 高等学校化学学报, 2009, 30(1): 51. |
| [13] | 刘彦明, 曹俊涛, 郑艳丽 . 毛细管电泳间接电致化学发光灵敏检测去甲肾上腺素及其在尿样分析中的应用[J]. 高等学校化学学报, 2008, 29(1): 81. |
| [14] | 郭丽丽, 许春丽, 李保新, 吕家根 . 生物活性化合物液相直接化学发光特性的理论预测[J]. 高等学校化学学报, 2007, 28(6): 1043. |
| [15] | 张琰图,章竹君,孙永华,魏月 . 高效液相色谱电生Mn(Ⅲ)化学发光法检测人体血清和尿样中的卡托普利[J]. 高等学校化学学报, 2007, 28(5): 862. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
