高等学校化学学报 ›› 2016, Vol. 37 ›› Issue (1): 126.doi: 10.7503/cjcu20150442

• 物理化学 • 上一篇    下一篇

介孔TiO2载体对固体聚合物电解质水电解阳极催化剂性能的影响

陈刚1(), 米灿根1, 吕洪2, 郝传璞2, 黄宇1, 宋宇琨2   

  1. 1. 湖南大学材料科学与工程学院, 长沙 410082
    2. 同济大学新能源汽车工程中心, 上海 201804
  • 收稿日期:2015-06-04 出版日期:2016-01-10 发布日期:2015-12-20
  • 基金资助:
    国家自然科学基金(批准号: 21306141)资助

Mesoporous TiO2 as the Anode Catalyst Support for Solid Polymer Electrolyte Water Electrolysis

CHEN Gang1,*(), MI Cangen1, LÜ Hong2,*, HAO Chuanpu2, HUANG Yu1, SONG Yukun2   

  1. 1. College of Materials Science and Engineering, Hunan University, Changsha 410082, China
    2. Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China
  • Received:2015-06-04 Online:2016-01-10 Published:2015-12-20
  • Contact: CHEN Gang,LÜ Hong E-mail:lvhong@tongji.edu.cn
  • Supported by:
    † Supported by the National Natural Science Foundation of China(No.21306141)

摘要:

以钛酸四丁酯为原料, 采用溶剂蒸发自组装法(EISA)在不同焙烧温度下制备不同比表面积及结构的介孔TiO2载体. 利用亚当斯熔融法在介孔TiO2载体表面负载IrO2纳米颗粒, 对IrO2/TiO2的结构和性能进行了表征, 并在质子交换膜(PEM)单电池中对IrO2/TiO2催化剂进行了电化学表征. 结果表明, 随着焙烧温度的升高, TiO2载体比表面积降低, 孔径增大, 孔容减小, 组织结构有利于向金红石相转变. TiO2载体的存在明显改善了IrO2颗粒的分布, IrO2晶粒尺寸减小. 在IrO2负载量(质量分数)为40%的情况下, IrO2颗粒易在低比表面积的载体表面形成连续的IrO2导电催化层, 载体比表面积越低其催化活性越高. 在1 A/cm2的电流密度下, IrO2, 40%IrO2/TiO2-2和40%IrO2/TiO2-3催化剂的极化电势分别为2.028, 2.426和2.064 V. 介孔TiO2载体的表面结构及导电性极大影响了催化剂的电化学活性.

关键词: 氢能, 电解水, 电催化剂载体, 氧化铱, 质子交换膜电解槽

Abstract:

TiO2 support was prepared through evaporation-induced self-assembly(EISA) by using butyl titanate as starting material. Three TiO2 samples were calcined at different temperatures and then IrO2 was loaded on them with a mass ratio of IrO2/TiO2 of 2/3 by a modified Adams fusion method. The samples were characterized by X-ray diffraction(XRD), specific surface area measurement, thermogravimetric and differential scanning calorimetry analysis(TGA-DSC), transmission electron microscopy(TEM) and electrochemical testing. The electrochemical activity of the catalysts was investigated in a single cell proton exchange membrane(PEM) electrolyzer consisting of a Pt/C cathode and a Nafion117 membrane. The results suggested that as the calcination temperature increased, the mesoporous structure of TiO2 was destroyed, the pore size increased and the pore volume reduced, and the phase of TiO2 transferred from anatase to rutile structure. Utilization of the TiO2 support resulted in a reduction in the size of the IrO2 crystallites and improved the distribution of catalyst. It was found that the lower the specific surface area of the support was, the higher the electrochemical activity of the catalyst was. This is most likely due to the formation of a conductive IrO2 film on the surface of non-conductive supports with 40%(mass fraction) loading of IrO2. The IrO2, 40%IrO2/TiO2-2 and 40%IrO2/TiO2-3 catalysts showed a polarization potential of 2.024, 2.426 and 2.064 V, respectively, under a current density of 1.0 A/cm2. These results suggest that the surface structure of the support has a great influence on the catalytic activity of IrO2.

Key words: Hydrogen, Water electrolysis, Electrocatalyst support, IrO2, Proton exchange membrane electrolyzer

中图分类号: 

TrendMD: