高等学校化学学报 ›› 2014, Vol. 35 ›› Issue (2): 205.doi: 10.7503/cjcu20131065
收稿日期:
2013-11-04
出版日期:
2014-02-10
发布日期:
2013-12-30
作者简介:
联系人简介: 张 皓, 男, 博士, 教授, 博士生导师, 主要从事聚合物基纳米复合材料研究. E-mail:基金资助:
ZHOU Ding1, XU Xiaowei2, LIU Min1, ZHANG Hao1,*(), SUN Hongchen2,*(
)
Received:
2013-11-04
Online:
2014-02-10
Published:
2013-12-30
Contact:
ZHANG Hao,SUN Hongchen
E-mail:hao_zhang@jlu.edu.cn;hcsun@jlu.edu.cn
Supported by:
摘要:
有效测量纳微米尺度范围温度及物体表面温度梯度分布需要研发各种类型的纳米尺度温度计来实现. 半导体纳米晶由于具有尺寸效应引起光致发光(荧光)效应, 其具有的热胀冷缩的性质会使得温度变化引起纳米晶晶格收缩或膨胀, 从而引起荧光光谱的变化, 进而为设计制备高灵敏度温度计奠定基础. 结合前期相关工作, 本文总结了基于纳米晶的各种荧光纳米温度计, 阐述不同类型纳米温度计的特性, 为这一前沿领域研究提供启发.
中图分类号:
TrendMD:
周鼎, 徐晓薇, 刘敏, 张皓, 孙宏晨. 基于纳米晶晶格热胀冷缩的高灵敏度荧光纳米温度计. 高等学校化学学报, 2014, 35(2): 205.
ZHOU Ding, XU Xiaowei, LIU Min, ZHANG Hao, SUN Hongchen. High Sensitivity Luminescence Nanothermometry on the Basis of Lattice Dilation of Nanocrystals†. Chem. J. Chinese Universities, 2014, 35(2): 205.
Fig.1 Fluorescence spectra of CdTe nanocrystals(NCs) at different temperatures(A), fluorescence peak intensity of CdTe NCs as a function of temperature(B) and fluorescence peak intensity of CdTe NCs as a function of temperature with an irreversible effect after heating to 140 ℃(C)[3]
Fig.2 Schematic diagram of noncontact temperature characterization using NCs through emission spectral shifts(A) and representative spectrum-position image containing several single NCs(B)[52]
Fig.3 Peak emission wavelength of the CdSe-NCs fluorescence as a function of the gold nanorod solution temperature(A), schematic diagram of the double beam confocal microscope(B) and fluorescence emission spectrum obtained for the CdSe-NCs incorporated into the gold nanorod solution under 488 nm excitation in the presence/absence of optical excitation of the surface plasmon resonance(SPR) of gold nanorods(C)[50]
Fig.4 Gradient fluorescence of α-CD- and β-CD-decorated CdTe NCs aqueous solution in quartz tubes(A), fluorescence spectra of β-CD-decorated CdTe NCs that are measured with the increase of temperature from -35 ℃ to 90 ℃ at a step of 5 ℃(red solid) and that from 90 ℃ to -35 ℃(white dash)(B), temperature-dependent fluorescence peak position of β-CD-decorated CdTe NCs(C), and CIE chromaticity diagram showing the temperature dependence of the (x, y) color coordinates of β-CD-decorated CdTe NCs(D)[81]
Fig.5 β-CD-decorated CdTe NCs as the nanothermometer to exhibit the photothermal behavior of PPy-enveloped branched Au NPs[81] (A),(B) Optical photographs of CdTe and Au-CdTe mixture without(A) and with 808 nm irradiation(B); (C),(D) the dependence of the fluorescence spectra(C) and the shifts of peak positions(D) on the irradiation duration. Insets of (D): the fluorescent images of Au-CdTe mixture before and after 11 min irradiation. (E) Optical photograph of Au-CdTe film. Temperature maps of Au-CdTe film with 0 s(F), 30 s(G) and 60 s(H) irradiation, after which the film is cooled down to room temperature(I). The laser power density is 3 W/cm2.
Fig.6 Variable-temperature PL spectra of colloidal Zn1-xMnxSe/ZnS/CdS/ZnS NCs, measured in octadecene under nitrogen[59] (A) Spectra were normalized to total integrated intensity; (B) thermometric response curve plotting Iexc/Itot vs. temperature for these NCs, a maximum slope of 7.3×10-3 ℃-1 was obtained.
Fig.7 Si NCs act as excellent nanothermometers through the FLIM technique[99](A) Fluorescence decay curves corresponding to Si NCs at different temperatures; (B) temperature variation of FLT obtained for Si NCs; (C) schematic diagram of the experimental setup used to monitor local heating experiment; (D) pseudocolor thermal distribution images of the temperature-sensitive Si NCs aqueous solution; (E) pseudocolor thermal imaging of a character pattern.
[1] | Clausen T., van Hardeveld C., Everts M. E., Physiol. Rev., 1991, 71(3), 733—774 |
[2] | Narberhaus F., Waldminghaus T., Chowdhury S., FEMS Microbiol. Rev., 2006, 30(1), 3—16 |
[3] | Wang S. P., Westcott S., Chen W., J. Phys. Chem. B, 2002, 106(43), 11203—11209 |
[4] | Lee J., Kotov N. A., Nano Today, 2007, 2(1), 48—51 |
[5] | Alivisatos A. P., Science, 1996, 271(5251), 933—937 |
[6] | Klimov V. I., Mikhailovsky A. A., Xu S., Malko A., Hollingsworth J. A., Leatherdale C. A., Eisler H. J., Bawendi M. G., Science, 2000, 290(5490), 314—317 |
[7] | Murray C. B., Norris D. J., Bawendi M. G., J. Am. Chem. Soc., 1993, 115(19), 8706—8715 |
[8] | Rajh T., Nozik A. J., J. Phys. Chem., 1993, 97(46), 11999—12003 |
[9] | Nirmal M., Brus L., Acc. Chem. Res., 1999, 32(5), 407—414 |
[10] | Chan W. C. W., Nie S. M., Science, 1998, 281(5385), 2016—2018 |
[11] | Cao Y. W., Banin U., J. Am. Chem. Soc., 2000, 122(40), 9692—9702 |
[12] | Tang K. B., Qian Y. T., Zeng J. H., Yang X. G., Adv. Mater., 2003, 15(5), 448—450 |
[13] | Gaponik N., Talapin D. V., Rogach A. L., Hoppe K., Shevchenko E. V., Kornowski A., Eychmüller A., Weller H., J. Phys. Chem. B, 2002, 106(29), 7177—7185 |
[14] | Rogach A. L., Franzl T., Klar T. A., Feldmann J., Gaponik N., Lesnyak V., Shavel A., Eychmüller A., Rakovich Y. P., Donegan J. F., J. Phys. Chem. C, 2007, 111(40), 14628—14637 |
[15] | Gaponik N., Rogach A. L., Phys. Chem. Chem. Phys., 2010, 12(31), 8685—8693 |
[16] | Bao H. B., Gong Y. J., Li Z., Gao M. Y., Chem. Mater., 2004, 16(20), 3853—3859 |
[17] | Zhang H., Lu G., Ji X. L., Li Z., Yang B., Chem. J. Chinese Universities, 2003, 24(1), 178—180 |
(张皓, 陆广, 纪秀磊, 李哲, 杨柏.高等学校化学学报,2003, 24(1), 178—180) | |
[18] | Tang Z. Y., Zhang Z. L., Wang Y., Glotzer S. C., Kotov N. A., Science, 2006, 314(5797), 274—278 |
[19] | Traore Z. S., Su X. G., Chem. Res. Chinese Universites, 2012, 28(4), 604—608 |
[20] | Zhang H., Yang B., Chem. J. Chinese Universities, 2008, 29(2), 217—229 |
(张皓, 杨柏.高等学校化学学报,2008, 29(2), 217—229) | |
[21] | He Y., Sai L. M., Lu H. T., Hu M., Lai W. Y., Fan Q. L., Wang L. H., Huang W., Chem. Mater., 2007, 19(3), 359—365 |
[22] | Zheng Y. G., Gao S. J., Ying J. Y., Adv. Mater., 2007, 19(3), 376—380 |
[23] | Li Y. B., Zhang H. X., Guo C. X., Hu G. Q., Du H. Y., Jin M. H., Huang P. L., Sun Z. Z., Yang W. S., Chem. Res. Chinese Universites, 2012, 28(2), 276—281 |
[24] | Zou L., Gu Z. Y., Zhang N., Zhang Y. L., Fang Z., Zhu W. H., Zhong X. H., J. Mater. Chem., 2008, 18(24), 2807—2815 |
[25] | Manna L., Scher E. C., Alivisatos A. P., J. Am. Chem. Soc., 2000, 122(51), 12700—12706 |
[26] | Peng X. G., Manna L., Yang W. D., Wickham J., Scher E., Kadavanich A., Alivisatos A. P., Nature, 2000, 404(6773), 59—61 |
[27] | Peng Z. A., Peng X. G., J. Am. Chem. Soc., 2001, 123(7), 1389—1395 |
[28] | Wang Y. P., Zhang K., Wei H. T., Meng Q. N., Zhou D., Jiang L. M. Yang B., Chem. J. Chinese Universities, 2010, 31(11), 2153—2156 |
(王燕萍, 张恺, 魏浩桐, 孟庆男, 周鼎, 姜力铭, 杨柏.高等学校化学学报,2010, 31(11), 2153—2156) | |
[29] | Kumar S., Nann T., Small, 2006, 2(3), 316—329 |
[30] | Shen H. B., Wang H. Z., Chen X., Niu J. Z., Xu W., Li X. M., Jiang X. D., Du Z., Li L. S., Chem. Mater., 2010, 22(16), 4756—4761 |
[31] | Wang M. P., Lin J. H., Shan C. S., Chem. Res. Chinese Universites, 2011, 27(4), 540—542 |
[32] | Wang C. X., Wang Y., Xu L., Shi X. D., Li X. W., Xu X. W., Sun H., Yang B., Lin Q., Small, 2013, 9(3), 413—420 |
[33] | Swafford L. A., Weigand L. A., Bowers M. J., McBride J. R., Rapaport J. L., Watt T. L., Dixit S. K., Feldman L. C., Rosenthal S. J., J. Am. Chem. Soc., 2006, 128(37), 12299—12306 |
[34] | Regulacio M. D., Han M. Y., Acc. Chem. Res., 2010, 43(5), 621—630 |
[35] | Wang C., Zhang D., Xu L., Jiang Y., Dong F., Yang B., Yu K., Lin Q., Angew. Chem. Int. Ed., 2011, 50(33), 7587—7591 |
[36] | Brites C. D. S., Lima P. P., Silva N. J. O., Millán A., Amaral V. S., Palacio F., Carlos L. D., Nanoscale, 2012, 4(16), 4799—4829 |
[37] | Jaque D., Vetrone F., Nanoscale, 2012, 4(15), 4301—4326 |
[38] | McLaurin E. J., Bradshaw L. R., Gamelin D. R., Chem. Mater., 2013, 25(8), 1283—1292 |
[39] | Yu W. W., Peng X. G., Angew. Chem. Int. Ed., 2002, 41(13), 2368—2371 |
[40] | Warner J. H., Tilley R. D., Adv. Mater., 2005, 17(24), 2997—3001 |
[41] | Bao H. F., Wang E. K., Dong S. J., Small, 2006, 2(4), 476—480 |
[42] | Walker G. W., Sundar V. C., Rudzinski C. M., Wun A. W., Bawendi M. G., Nocera D. G., Appl. Phys. Lett., 2003, 83(17), 3555—3557 |
[43] | Lee J., Govorov A. O., Kotov N. A., Angew. Chem. Int. Ed., 2005, 117(45), 7605—7608 |
[44] | Joshi A., Narsingi K. Y., Manasreh M. O., Davis E. A., Weaver B. D., Appl. Phys. Lett., 2006, 89(13), 131907 |
[45] | Al Salman A., Tortschanoff A., Mohamed M. B., Tonti D., van Mourik F., Chergui M., Appl. Phys. Lett., 2007, 90(9), 093104 |
[46] | Valerini D., Cretí A., Lomascolo M., Manna L., Cingolani R., Anni M., Phys. Rev. B, 2005, 71(23), 235409 |
[47] | Nonoguchi Y., Nakashima T., Kawai T., J. Phys. Chem. C, 2007, 111(32), 11811—11815 |
[48] | Pugh-Thomas D., Walsh B. M., Gupta M. C., Nanotechnology, 2011, 22(18), 185503 |
[49] | Chattopadhyay S., Sen P., Thomas Andrews J., Kumar Sen P., J. Appl. Phys., 2012, 111(3), 034310 |
[50] | Maestro L. M., Haro-González P., Coello J. G., Jaque D., Appl. Phys. Lett., 2012, 100(20), 201110 |
[51] | Yue Y., Wang X. W., Nano Rev., 2012, 3(0), 11586 |
[52] | Li S., Zhang K., Yang J. M., Lin L. W., Yang H., Nano Lett., 2007, 7(10), 3102—3105 |
[53] | Vetrone F., Naccache R., Zamarrón A., Juarranz dela Fuente A., Sanz-Rodríguez F., Martinez Maestro L., Martín Rodriguez E., Jaque D., García Solé J., Capobianco J. A., ACS Nano, 2010, 4(6), 3254—3258 |
[54] | Vlaskin V. A., Janssen N., van Rijssel J., Beaulac R., Gamelin D. R., Nano Lett., 2010, 10(9), 3670—3674 |
[55] | Fischer L. H., Harms G. S., Wolfbeis O. S., Angew. Chem. Int. Ed., 2011, 50(20), 4546—4551 |
[56] | Zhang W., He X. W., Li W. Y., Zhang Y. K., Chem. Commun., 2012, 48(12), 1757—1759 |
[57] | Chen P. C., Chen Y. N., Hsu P. C., Shih C. C., Chang H. T., Chem. Commun., 2013, 49(16), 1639—1641 |
[58] | Hsia C. H., Wuttig A., Yang H., ACS Nano, 2011, 5(12), 9511—9522 |
[59] | McLaurin E. J., Vlaskin V. A., Gamelin D. R., J. Am. Chem. Soc., 2011, 133(38), 14978—14980 |
[60] | Albers A. E., Chan E. M., McBride P. M., Ajo-Franklin C. M., Cohen B. E., Helms B. A., J. Am. Chem. Soc., 2012, 134(23), 9565—9568 |
[61] | Feng J., Tian K. J., Hu D. H., Wang S. Q., Li S. Y., Zeng Y., Li Y., Yang G. Q., Angew. Chem. Int. Ed., 2011, 50(35), 8072—8076 |
[62] | Liang R. Z., Tian R., Shi W. Y., Liu Z. H., Yan D. P., Wei M., Evans D. G., Duan X., Chem. Commun., 2013, 49(10), 969—971 |
[63] | Zhou D., Lin M., Liu X., Li J., Chen Z. L., Yao D., Sun H. Z., Zhang H., Yang B., ACS Nano, 2013, 7(3), 2273—2283 |
[64] | Wise F. W., Acc. Chem. Res., 2000, 33(11), 773—780 |
[65] | Narayanaswamy A., Feiner L. F., van Der Zaag P. J., J. Phys. Chem. C, 2008, 112(17), 6775—6780 |
[66] | Dai Q. Q., Zhang Y., Wang Y. N., Hu M. Z., Zou B., Wang Y. D., Yu W. W., Langmuir, 2010, 26(13), 11435—11440 |
[67] | Yeon Woo J., Kumar Tripathy S., Kim K., Han C. S., Appl. Phys. Lett., 2012, 100(6), 063105 |
[68] | Nair P. V., Thomas K. G., J. Phys. Chem. A Lett., 2010, 1(14), 2094—2098 |
[69] | Califano M., Franceschetti A., Zunger A., Nano Lett., 2005, 5(12), 2360—2364 |
[70] | Kippeny T. C., Bowers M. J., Dukes A. D., McBride J. R., Orndorff R. L., Garrett M. D., Rosenthal S. J., J. Chem. Phys., 2008, 128(8), 084713 |
[71] | Califano M., Gómez-Campos F. M., Nano Lett., 2013, 13(5), 2047—2052 |
[72] | Wu W. Z., Yu D. Q., Ye H. A., Gao Y. C., Chang Q., Nanoscale Res. Lett., 2012, 7(1), 301 |
[73] | Varshni Y. P., Physica, 1967, 34(1), 149—154 |
[74] | Chin P. T. K., de Mello Donegá C., van Bavel S. S., Meskers S. C. J., Sommerdijk N. A. J. M., Janssen R. A. J., J. Am. Chem. Soc., 2007, 129(48), 14880—14886 |
[75] | Narayanaswamy A., Feiner L. F., Meijerink A., van der Zaag P. J., ACS Nano, 2009, 3(9), 2539—2546 |
[76] | Wen X. M., Sitt A., Yu P., Toh Y. R., Tang J., Phys. Chem. Chem. Phys., 2012, 14(10), 3505—3512 |
[77] | Bonghwan C., Jiwon B., Juwon P., Cherlhyun J., Jong Hwa C., Jong-Bong L., Taiha J., Sungjee K., J. Phys. Chem. C, 2011, 115(2), 436—442 |
[78] | Zhou D., Zhang H., Small, 2013, 9(19), 3195—3197 |
[79] | Zhong X. H., Feng Y. Y., Knoll W., Han M. Y., J. Am. Chem. Soc., 2003, 125(44), 13559—13563 |
[80] | Liu Y., Yao D., Shen L., Zhang H., Zhang X. D., Yang B., J. Am. Chem. Soc., 2012, 134(17), 7207—7210 |
[81] | Zhou D., Lin M., Chen Z. L., Sun H. Z., Zhang H., Sun H. C., Yang B., Chem. Mater., 2011, 23(21), 4857—4862 |
[82] | Betzel C., Saenger W., Hingerty B. E., Brown G. M., J. Am. Chem. Soc., 1984, 106(24), 7545—7557 |
[83] | Wood D. J., Hruska F. E., Saenger W., J. Am. Chem. Soc., 1977, 99(6), 1735—1740 |
[84] | Kozár T., Venanzi C. A., J. Mol. Struct., 1997, 395/396, 451—468 |
[85] | Lipkowitz K. B., Chem. Rev., 1998, 98(5), 1829—1873 |
[86] | Schneider H. J., Hacket F., Rüdiger V., Ikeda H., Chem. Rev., 1998, 98(5), 1755—1785 |
[87] | Schöps O., Le Thomas N., Woggon U., Artemyev M. V., J. Phys. Chem. B, 2006, 110(5), 2074—2079 |
[88] | Sakaue H., Aikawa A., Iijima Y., Sens. Actuators B, 2010, 150(2), 569—573 |
[89] | Yoo J. H., Park S. J., Kim J. S., Mol. Cryst. Liq. Cryst., 2010, 519(1), 62—68 |
[90] | Jaschinski E., Wehner M., Appl. Phys. A, 2012, 107(3), 691—696 |
[91] | Jaque D., Maestro L. M., Escudero E., Rodríguez E. M., Capobianco J. A., Vetrone F., Juarranz dela Fuente A., Sanz-Rodríguez F., Iglesias-de la Cruz M. C., Jacinto C., Rocha U., García Solé J., J. Lumin., 2013, 133(1), 249—253 |
[92] | Haro-González P., Martínez-Maestro L., Martín I. R., García-Solé J., Jaque D., Small, 2012, 8(17), 2652—2658 |
[93] | Rojas M. T., Königer R., Stoddart J. F., Kaifer A. E., J. Am. Chem. Soc., 1995, 117(1), 336—343 |
[94] | Van de Broek B., Devoogdt N., D'Hollander A., Gijs H. L., Jans K., Lagae L., Muyldermans S., Maes G., Borghs G., ACS Nano, 2011, 5(6), 4319—4328 |
[95] | Adachi S., Handbook on Physical Properties of Semiconductors, Springer,Berlin, 2004, 3 |
[96] | McDowell G. R., Holmes-Smith A. S., Uttamlal M., Wallace P. A., Faichnie D. M., Graham A., McStay D., J. Phys.: Conf. Ser., 2013, 450(1), 012008 |
[97] | Han B., Hanson W. L., Bensalah K., Tuncel A., Stern J. M., Cadeddu J. A., Ann. Biomed. Eng., 2009, 37(6), 1230—1239 |
[98] | Freddi S., Sironi L., D’Antuono R., Morone D., Donà A., Cabrini E., D’Alfonso L., Collini M., Pallavicini P., Baldi G., Maggioni D., Chirico G., Nano Lett., 2013, 13(5), 2004—2010 |
[99] | Li Q., He Y., Chang J., Wang L., Chen H. Z., Tan Y. W., Wang H. Y., Shao Z. Z., J. Am. Chem. Soc., 2013, 135(40), 14924—14927 |
[100] | Lee C. G., Uehara M., Yamaguchi Y., Nakamura H., Maeda H., IFMBE Proceedings, 2007, 14(1), 254—257 |
[101] | Wang J. W., Huang L., Appl. Phys. Lett., 2011, 98(11), 113102 |
[102] | Haro-González P., Ramsay W. T., Maestro L. M., del Rosal B., Santacruz-Gomez K., del Carmen Iglesias-dela Cruz M., Sanz-Rodríguez F., Chooi J. Y., Sevilla P. R., Bettinelli M., Choudhury D., Kar A. K., Solé J. G., Jaque D., Paterson L., Small, 2013, 9(12), 2162—2170 |
[103] | Nonoguchi Y., Nakashima T., Kawai T., J. Phys. Chem. C, 2009, 113(27), 11464—11468 |
[104] | Blumling D. E., Tokumoto T., McGill S., Knappenberger K. L. Jr., Phys. Chem. Chem. Phys., 2012, 14(31), 11053—11059 |
[105] | Bol A. A., van Beek R., Ferwerda J., Meijerink A., J. Phys. Chem. Solids, 2003, 64(2), 247—252 |
[1] | 姬少博, 陈晓东. 柔性电子学中的表界面化学[J]. 高等学校化学学报, 2021, 42(4): 1074. |
[2] | 颜范勇, 孙中慧, 庞纪平, 江英霞, 陈圆. 苯并噻嗪衍生物功能化的碳点用于检测银杏叶茶中的槲皮素[J]. 高等学校化学学报, 2020, 41(8): 1768. |
[3] | 张鑫宇, 王红, 方云, 樊晔. 共轭亚油酸修饰Fe3O4纳米颗粒的刺激响应性[J]. 高等学校化学学报, 2020, 41(11): 2519. |
[4] | 孙辉, 于庆松, 杨彪, 许国志. 聚醚醚酮表面的亲水改性和胶原蛋白固定化[J]. 高等学校化学学报, 2016, 37(6): 1154. |
[5] | 祝金明, 孙卓, 付瑶, 郭轶, 徐力. 水相合成荧光纳米晶与碱性蛋白酶的偶联及纯化[J]. 高等学校化学学报, 2015, 36(3): 511. |
[6] | 尚光远, 李明. 十六烷基膦酸表面修饰纳米镍粉及其复合材料的制备和性能[J]. 高等学校化学学报, 2014, 35(2): 427. |
[7] | 徐玉东, 张正勇, 孔继烈, 李国栋, 熊焕明. 聚甲基丙烯酰胺包覆的ZnO发光量子点及其在细胞成像中的应用[J]. 高等学校化学学报, 2013, 34(7): 1565. |
[8] | 夏志勇, 杜娜, 刘建强, 侯万国. 聚乙二醇和叶酸对层状双金属氢氧化物颗粒的表面修饰[J]. 高等学校化学学报, 2013, 34(3): 596. |
[9] | 甘孟瑜, 李志春, 马利, 郝少娜, 贾春悦, 刘兴敏. 聚苯胺的表面修饰及防腐性能[J]. 高等学校化学学报, 2012, 33(03): 630. |
[10] | 承倩怡 周鼎 韩宝航. 碳纳米材料的超分子表面修饰及应用[J]. 高等学校化学学报, 2011, 32(9): 2062. |
[11] | 王琳琳, 黄江, 金伟, 金钦汉, 牟颖. 环氧树脂微流控芯片的表面功能化修饰[J]. 高等学校化学学报, 2011, 32(6): 1272. |
[12] | 莫志宏, 饶通德, 杨小超. 基于表面修饰聚丙烯酸合成超顺磁/荧光纳米复合粒子[J]. 高等学校化学学报, 2009, 30(9): 1881. |
[13] | 夏晓东, 沈国励, 俞汝勤. 银溶胶诱导多壁碳纳米管非共价表面修饰[J]. 高等学校化学学报, 2009, 30(8): 1477. |
[14] | 张皓, 杨柏. 荧光纳米晶制备及其与聚合物的复合组装[J]. 高等学校化学学报, 2008, 29(2): 217. |
[15] | 陈莉华,覃事栋,李朝阳 . 胃蛋白酶对CdTe纳米粒子的表面修饰及分析应用[J]. 高等学校化学学报, 2008, 29(2): 277. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||