高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (7): 20250053.doi: 10.7503/cjcu20250053
吴军辉1, 吴佳佳1, 潘双叶2, 陈见爱1(), 谭成侠1(
)
收稿日期:
2025-02-26
出版日期:
2025-07-10
发布日期:
2025-04-09
通讯作者:
谭成侠
E-mail:chenjianai@zjut.edu.cn;tanchengxia@zjut.edu.cn
作者简介:
陈见爱, 女, 博士, 助理研究员, 主要从事连续流和手性识别方面的研究. E⁃mail: chenjianai@zjut.edu.cn
基金资助:
WU Junhui1, WU Jiajia1, PAN Shuangye2, CHEN Jianai1(), TAN Chengxia1(
)
Received:
2025-02-26
Online:
2025-07-10
Published:
2025-04-09
Contact:
TAN Chengxia
E-mail:chenjianai@zjut.edu.cn;tanchengxia@zjut.edu.cn
Supported by:
摘要:
2-甲基-5-氨基苯酚是一种重要的活性中间体, 可广泛应用于染料、 医药及化妆品领域, 市场需求持续增长. 然而, 其传统工业生产存在能耗高、 反应时间长及安全性等问题. 本文基于连续流反应器的技术优势, 开发了一种2-甲基-5-氨基苯酚的半连续流合成工艺. 通过将3个关键中间体的生产工艺改造为连续流工艺, 使反应时间从12 h大幅缩短至4 min, 最终产物的分离收率达78.5%. 该工艺不仅显著提升了反应效率, 还优化了工艺条件, 使产物生成更加稳定, 同时有效降低了能耗和安全隐患. 研究结果为连续流技术与绿色高效工业生产的结合提供了重要参考.
中图分类号:
TrendMD:
吴军辉, 吴佳佳, 潘双叶, 陈见爱, 谭成侠. 2-甲基-5-氨基苯酚的半连续流合成. 高等学校化学学报, 2025, 46(7): 20250053.
WU Junhui, WU Jiajia, PAN Shuangye, CHEN Jianai, TAN Chengxia. Semi-continuous Flow Synthesis of 2-Methyl-5-aminophenol. Chem. J. Chinese Universities, 2025, 46(7): 20250053.
Entry | Temperature/℃ | Molar ratio | Pression/MPa | Residence time/s | Conversion(%) * |
---|---|---|---|---|---|
1 | 15 | 1∶8 | 1.0 | 60 | 11.45 |
2 | 25 | 1∶8 | 1.0 | 60 | 100 |
3 | 35 | 1∶8 | 1.0 | 60 | 96.31 |
4 | 45 | 1∶8 | 1.0 | 60 | 96.06 |
5 | 25 | 1∶1 | 1.0 | 60 | 54.12 |
6 | 25 | 1∶3 | 1.0 | 60 | 81.52 |
7 | 25 | 1∶5 | 1.0 | 60 | 96.83 |
8 | 25 | 1∶7 | 1.0 | 60 | 98.91 |
9 | 25 | 1∶8 | 0.5 | 60 | 98.81 |
10 | 25 | 1∶8 | 2.0 | 60 | 99.64 |
11 | 25 | 1∶8 | 3.0 | 60 | 98.74 |
12 | 25 | 1∶8 | 4.0 | 60 | 95.25 |
13 | 25 | 1∶8 | 1.0 | 90 | 100 |
14 | 25 | 1∶8 | 1.0 | 70 | 100 |
15 | 25 | 1∶8 | 1.0 | 50 | 100 |
16 | 25 | 1∶8 | 1.0 | 30 | 100 |
17 | 25 | 1∶8 | 1.0 | 20 | 79.53 |
Table 1 Optimization of the conditions for the synthesis of compound 6
Entry | Temperature/℃ | Molar ratio | Pression/MPa | Residence time/s | Conversion(%) * |
---|---|---|---|---|---|
1 | 15 | 1∶8 | 1.0 | 60 | 11.45 |
2 | 25 | 1∶8 | 1.0 | 60 | 100 |
3 | 35 | 1∶8 | 1.0 | 60 | 96.31 |
4 | 45 | 1∶8 | 1.0 | 60 | 96.06 |
5 | 25 | 1∶1 | 1.0 | 60 | 54.12 |
6 | 25 | 1∶3 | 1.0 | 60 | 81.52 |
7 | 25 | 1∶5 | 1.0 | 60 | 96.83 |
8 | 25 | 1∶7 | 1.0 | 60 | 98.91 |
9 | 25 | 1∶8 | 0.5 | 60 | 98.81 |
10 | 25 | 1∶8 | 2.0 | 60 | 99.64 |
11 | 25 | 1∶8 | 3.0 | 60 | 98.74 |
12 | 25 | 1∶8 | 4.0 | 60 | 95.25 |
13 | 25 | 1∶8 | 1.0 | 90 | 100 |
14 | 25 | 1∶8 | 1.0 | 70 | 100 |
15 | 25 | 1∶8 | 1.0 | 50 | 100 |
16 | 25 | 1∶8 | 1.0 | 30 | 100 |
17 | 25 | 1∶8 | 1.0 | 20 | 79.53 |
Entry | Temperature/℃ | Molar ratio | Pression/Mpa | Residence time/s | Conversion(%) * |
---|---|---|---|---|---|
1 | 25 | 1∶8 | 1.0 | 60 | 96.01 |
2 | 25 | 1∶8 | 1.5 | 60 | 92.11 |
3 | 25 | 1∶8 | 2.0 | 60 | 91.41 |
4 | 25 | 1∶8 | 3.0 | 60 | 90.47 |
5 | 25 | 1∶8 | 4.0 | 60 | 89.61 |
6 | 10 | 1∶8 | 1.0 | 60 | 90.89 |
7 | 20 | 1∶8 | 1.0 | 60 | 98.74 |
8 | 30 | 1∶8 | 1.0 | 60 | 100 |
9 | 40 | 1∶8 | 1.0 | 60 | 100 |
10 | 25 | 1∶1 | 1.0 | 60 | 43.91 |
11 | 25 | 1∶3 | 1.0 | 60 | 58.60 |
12 | 25 | 1∶5 | 1.0 | 60 | 73.69 |
13 | 25 | 1∶7 | 1.0 | 60 | 83.12 |
14 | 25 | 1∶9 | 1.0 | 60 | 92.67 |
15 | 25 | 1∶8 | 1.0 | 20 | 45.78 |
16 | 25 | 1∶8 | 1.0 | 40 | 70.98 |
17 | 25 | 1∶8 | 1.0 | 70 | 95.26 |
18 | 25 | 1∶8 | 1.0 | 100 | 100 |
19 | 25 | 1∶8 | 1.0 | 120 | 100 |
Table 2 Optimization of the conditions for the synthesis of compound 1
Entry | Temperature/℃ | Molar ratio | Pression/Mpa | Residence time/s | Conversion(%) * |
---|---|---|---|---|---|
1 | 25 | 1∶8 | 1.0 | 60 | 96.01 |
2 | 25 | 1∶8 | 1.5 | 60 | 92.11 |
3 | 25 | 1∶8 | 2.0 | 60 | 91.41 |
4 | 25 | 1∶8 | 3.0 | 60 | 90.47 |
5 | 25 | 1∶8 | 4.0 | 60 | 89.61 |
6 | 10 | 1∶8 | 1.0 | 60 | 90.89 |
7 | 20 | 1∶8 | 1.0 | 60 | 98.74 |
8 | 30 | 1∶8 | 1.0 | 60 | 100 |
9 | 40 | 1∶8 | 1.0 | 60 | 100 |
10 | 25 | 1∶1 | 1.0 | 60 | 43.91 |
11 | 25 | 1∶3 | 1.0 | 60 | 58.60 |
12 | 25 | 1∶5 | 1.0 | 60 | 73.69 |
13 | 25 | 1∶7 | 1.0 | 60 | 83.12 |
14 | 25 | 1∶9 | 1.0 | 60 | 92.67 |
15 | 25 | 1∶8 | 1.0 | 20 | 45.78 |
16 | 25 | 1∶8 | 1.0 | 40 | 70.98 |
17 | 25 | 1∶8 | 1.0 | 70 | 95.26 |
18 | 25 | 1∶8 | 1.0 | 100 | 100 |
19 | 25 | 1∶8 | 1.0 | 120 | 100 |
Entry | Molar ratio of nitric acid to 2-methylaniline | Conversion(%) | Relative content of compound 4(%) * | Relative content of compound 8(%) * |
---|---|---|---|---|
1 | 1∶1.00 | 93.3 | 77.2 | 16.0 |
2 | 1∶1.05 | 94.5 | 78.2 | 16.0 |
3 | 1∶1.10 | 95.3 | 79.1 | 16.1 |
4 | 1∶1.15 | 97.2 | 80.5 | 16.3 |
5 | 1∶1.20 | 100 | 83.2 | 16.8 |
Table 3 Optimization of nitric acid concentration for the synthesis of compound 4
Entry | Molar ratio of nitric acid to 2-methylaniline | Conversion(%) | Relative content of compound 4(%) * | Relative content of compound 8(%) * |
---|---|---|---|---|
1 | 1∶1.00 | 93.3 | 77.2 | 16.0 |
2 | 1∶1.05 | 94.5 | 78.2 | 16.0 |
3 | 1∶1.10 | 95.3 | 79.1 | 16.1 |
4 | 1∶1.15 | 97.2 | 80.5 | 16.3 |
5 | 1∶1.20 | 100 | 83.2 | 16.8 |
Entry | Temperature/℃ | Conversion(%) | Relative content of compound 4(%)* | Relative content of compound 8(%) * | Isomer ratio |
---|---|---|---|---|---|
1 | 5 | 83.5 | 70.8 | 12.6 | 5.6 |
2 | 10 | 93.7 | 79.0 | 14.6 | 5.4 |
3 | 15 | 95.3 | 80.1 | 15.2 | 5.3 |
4 | 20 | 100 | 83.3 | 16.7 | 5.0 |
5 | 25 | 100 | 82.8 | 17.2 | 4.8 |
Table 4 Optimization of temperature for the synthesis of compound 4
Entry | Temperature/℃ | Conversion(%) | Relative content of compound 4(%)* | Relative content of compound 8(%) * | Isomer ratio |
---|---|---|---|---|---|
1 | 5 | 83.5 | 70.8 | 12.6 | 5.6 |
2 | 10 | 93.7 | 79.0 | 14.6 | 5.4 |
3 | 15 | 95.3 | 80.1 | 15.2 | 5.3 |
4 | 20 | 100 | 83.3 | 16.7 | 5.0 |
5 | 25 | 100 | 82.8 | 17.2 | 4.8 |
Entry | Residence time/min | Conversion(%) | Relative content of compound 4(%) * | Relative content of compound 8(%) * |
---|---|---|---|---|
1 | 8.00 | 70.7 | 58.9 | 11.8 |
2 | 7.00 | 88.1 | 72.7 | 15.4 |
3 | 5.84 | 85.5 | 70.2 | 14.6 |
4 | 3.90 | 94.0 | 77.0 | 17.4 |
5 | 2.92 | 98.4 | 81.5 | 17.0 |
6 | 2.34 | 99.8 | 81.4 | 16.9 |
7 | 1.95 | 100 | 82.2 | 17.8 |
Table 5 Optimization of residence time for the synthesis of compound 4
Entry | Residence time/min | Conversion(%) | Relative content of compound 4(%) * | Relative content of compound 8(%) * |
---|---|---|---|---|
1 | 8.00 | 70.7 | 58.9 | 11.8 |
2 | 7.00 | 88.1 | 72.7 | 15.4 |
3 | 5.84 | 85.5 | 70.2 | 14.6 |
4 | 3.90 | 94.0 | 77.0 | 17.4 |
5 | 2.92 | 98.4 | 81.5 | 17.0 |
6 | 2.34 | 99.8 | 81.4 | 16.9 |
7 | 1.95 | 100 | 82.2 | 17.8 |
Entry | Reagent | Tempereture/℃ | Molar ratio | Conversion(%) | Relative content(%) b |
---|---|---|---|---|---|
1 | NaNO2 | 40 | 1∶1.00 | 92.7 | 88.6 |
2 | NaNO2 | 40 | 1∶1.10 | 97.2 | 92.0 |
3 | NaNO2 | 40 | 1∶1.20 | 98.8 | 93.6 |
4 | NaNO2 | 40 | 1∶1.30 | 100 | 92.5 |
5 | NaNO2 | 40 | 1∶1.40 | 99.6 | 94.0 |
6 | NOHSO4 | 40 | 1∶1.00 | 95.4 | 92.1 |
7 | NOHSO4 | 40 | 1∶1.05 | 100 | 98.6 |
8 | NOHSO4 | -10 | 1∶1.05 | 86.0 | 80.7 |
9 | NOHSO4 | 0 | 1∶1.05 | 91.5 | 87.0 |
10 | NOHSO4 | 10 | 1∶1.05 | 96.7 | 92.1 |
11 | NOHSO4 | 15 | 1∶1.05 | 99.4 | 95.5 |
12 | NOHSO4 | 25 | 1∶1.05 | 100 | 95.4 |
13 | NOHSO4 | 50 | 1∶1.05 | 99.7 | 91.4 |
Table 6 Optimization of reaction conditions for the synthesis of compound 3 a
Entry | Reagent | Tempereture/℃ | Molar ratio | Conversion(%) | Relative content(%) b |
---|---|---|---|---|---|
1 | NaNO2 | 40 | 1∶1.00 | 92.7 | 88.6 |
2 | NaNO2 | 40 | 1∶1.10 | 97.2 | 92.0 |
3 | NaNO2 | 40 | 1∶1.20 | 98.8 | 93.6 |
4 | NaNO2 | 40 | 1∶1.30 | 100 | 92.5 |
5 | NaNO2 | 40 | 1∶1.40 | 99.6 | 94.0 |
6 | NOHSO4 | 40 | 1∶1.00 | 95.4 | 92.1 |
7 | NOHSO4 | 40 | 1∶1.05 | 100 | 98.6 |
8 | NOHSO4 | -10 | 1∶1.05 | 86.0 | 80.7 |
9 | NOHSO4 | 0 | 1∶1.05 | 91.5 | 87.0 |
10 | NOHSO4 | 10 | 1∶1.05 | 96.7 | 92.1 |
11 | NOHSO4 | 15 | 1∶1.05 | 99.4 | 95.5 |
12 | NOHSO4 | 25 | 1∶1.05 | 100 | 95.4 |
13 | NOHSO4 | 50 | 1∶1.05 | 99.7 | 91.4 |
Entry | Mass fraction of H2SO4(%) | Temperature/℃ | Conversion(%) | Relative content(%) b |
---|---|---|---|---|
1 | 90 | 80 | 99.7 | 92.6 |
2 | 80 | 80 | 99.8 | 92.6 |
3 | 70 | 80 | 100 | 92.3 |
4 | 60 | 80 | 100 | 91.5 |
5 | 50 | 80 | 100 | 91.4 |
6 | 40 | 80 | 96.7 | 84.4 |
7 | 70 | 70 | 91.5 | 87.5 |
8 | 70 | 85 | 100 | 94.2 |
9 | 70 | 90 | 99.7 | 93.5 |
10 | 70 | 100 | 100 | 94.0 |
11 | 70 | 110 | 100 | 94.1 |
12 | 70 | 120 | 100 | 93.7 |
Table 7 Optimization of reaction conditions for the synthesis of compound 2 a
Entry | Mass fraction of H2SO4(%) | Temperature/℃ | Conversion(%) | Relative content(%) b |
---|---|---|---|---|
1 | 90 | 80 | 99.7 | 92.6 |
2 | 80 | 80 | 99.8 | 92.6 |
3 | 70 | 80 | 100 | 92.3 |
4 | 60 | 80 | 100 | 91.5 |
5 | 50 | 80 | 100 | 91.4 |
6 | 40 | 80 | 96.7 | 84.4 |
7 | 70 | 70 | 91.5 | 87.5 |
8 | 70 | 85 | 100 | 94.2 |
9 | 70 | 90 | 99.7 | 93.5 |
10 | 70 | 100 | 100 | 94.0 |
11 | 70 | 110 | 100 | 94.1 |
12 | 70 | 120 | 100 | 93.7 |
No. | Step | Temperature/℃ | Pression/MPa | Molar ratio | Residence time/min | Relative content(%) | Space⁃time yield/(g·L-1·h-1) |
---|---|---|---|---|---|---|---|
1 | Batch | 70 | 1.5 | 1∶5.50 | 120 | 96.2 | 0.3 |
Continuous | 25 | 1.0 | 1∶8.00 | 0.5 | 99.8 | 1.4 | |
2 | Batch | -10 | — | 1∶1.05 | 240 | 85.3 | 35.5 |
Continuous | 20 | — | 1∶1.20 | 1.9 | 83.2 | 368.9 | |
3 | Batch | 25 | — | 1∶1.05 | 180 | 98.6 | 34.5 |
4 | Batch | 85 | — | — | 180 | 94.2 | 21.1 |
5 | Batch | 90 | 2.0 | 1∶6.33 | 120 | 97.8 | 0.28 |
Continuous | 25 | 1.0 | 1∶8.00 | 1.6 | 99.9 | 0.58 |
Table 8 Comparison between batch and self-continuous procedures for the synthesis of 2-methyl-5-aminophenol
No. | Step | Temperature/℃ | Pression/MPa | Molar ratio | Residence time/min | Relative content(%) | Space⁃time yield/(g·L-1·h-1) |
---|---|---|---|---|---|---|---|
1 | Batch | 70 | 1.5 | 1∶5.50 | 120 | 96.2 | 0.3 |
Continuous | 25 | 1.0 | 1∶8.00 | 0.5 | 99.8 | 1.4 | |
2 | Batch | -10 | — | 1∶1.05 | 240 | 85.3 | 35.5 |
Continuous | 20 | — | 1∶1.20 | 1.9 | 83.2 | 368.9 | |
3 | Batch | 25 | — | 1∶1.05 | 180 | 98.6 | 34.5 |
4 | Batch | 85 | — | — | 180 | 94.2 | 21.1 |
5 | Batch | 90 | 2.0 | 1∶6.33 | 120 | 97.8 | 0.28 |
Continuous | 25 | 1.0 | 1∶8.00 | 1.6 | 99.9 | 0.58 |
Step | AE(%) | RME(%) | PMI | E |
---|---|---|---|---|
1 | 74.8 | 69.3 | 0.69 | 1.7 |
2 | 89.4 | 71.8 | 0.88 | 3.0 |
3 | 99.3 | 59.3 | 0.08 | 1.5 |
4 | 51.9 | 11.7 | 4.67 | 8.6 |
5 | 77.4 | 72.7 | 1.36 | 1.4 |
Table 9 Sustainability metrics of the self-continuous flow synthesis of 2-methyl-5-aminophenol*
Step | AE(%) | RME(%) | PMI | E |
---|---|---|---|---|
1 | 74.8 | 69.3 | 0.69 | 1.7 |
2 | 89.4 | 71.8 | 0.88 | 3.0 |
3 | 99.3 | 59.3 | 0.08 | 1.5 |
4 | 51.9 | 11.7 | 4.67 | 8.6 |
5 | 77.4 | 72.7 | 1.36 | 1.4 |
[1] | Yuan H. Y., Yin W. H., Hu J. L., Li Y., Nat. Commun., 2023, 14(1), 1841 |
[2] | Li X. C., Cheng Y., Wang X. D., Tong S., Wang M. X., Chem. Sci., 2024, 15(10), 3610—3615 |
[3] | Fnaiche A., Mélin L., Suárez N. G., Paquin A., Vu V., Li F. L., Allali⁃Hassani A., Bolotokova A., Allemand F., Gelin M., Cotelle P., Woo S., LaPlante S. R., Barsyte⁃Lovejoy D., Santhakumar V., Vedadi M., Guichou J. F., Annabi B., Gagnon A., Bioorg. Med. Chem. Lett., 2023, 95, 129488 |
[4] | Raza M. A., Farwa U., Ashraf A., Poyraz E. B., Yesilbag S., Agar E., Al⁃Sehemi A. G., Spectrochim. Acta A, 2023, 299, 122864 |
[5] | Rak M., Menge A., Tesch R., Berger L. M., Balourdas D. I., Shevchenko E., Krämer A., Elson L., Berger B. T., Abdi I., Wahl L. M., Poso A., Kaiser A., Hanke T., Kronenberger T., Joerger A. C., Müller S., Knapp S., J. Med. Chem., 2024, 67(5), 3813—3842 |
[6] | Jiang D. L., Zhao X. Y., Chemical Safety Environment, 2024, 37(07), 30—37 |
江丹灵, 赵祥有. 化工安全与环境, 2024, 37(07), 30—37 | |
[7] | Yu H. W., Zhao J. Y., Zhou P. C., Yu Z. Q., Zhejiang Chemical Industry, 2020, 51(11), 26—31 |
俞航伟, 赵金阳, 周朋成, 余志群. 浙江化工, 2020, 51(11), 26—31 | |
[8] | Zeng L. Y., Mao M. Z., Wang W., Wang L., Zhang J. G., Ning B. K., Chemical Reagents, 2018, 40(11), 1054—1058 |
曾丽媛, 毛明珍, 王威, 王伦, 张建功, 宁斌科. 化学试剂, 2018, 40(11), 1054—1058 | |
[9] | Mo F. Y., Qiu D., Jiang Y. B., Zhang Y., Wang J. B., Tetrahedron Lett., 2011, 52(4), 518—522 |
[10] | Yu Z. Q., Lu G. J., Chen J. Y., Xie S. T., Su W. K., J. Flow Chem., 2018, 8(2), 51—57 |
[11] | Liu H., Liu D. M., Sun H. T., Xia C., Su X. B., Chem. J. Chinese Universities, 2024, 45(07), 20240024 |
刘豪, 刘冬梅, 孙浩田, 夏超, 苏贤斌. 高等学校化学学报, 2024, 45(7), 20240024 | |
[12] | Yang Q., Li W. Q., Huang S. T., Li J. P., Liu T., Huang C., Chem. J. Chinese Universities, 2023, 44(6), 20220671 |
杨棋, 李伟强, 黄顺桃, 李靖鹏, 刘腾, 黄超. 高等学校化学学报, 2023, 44(6), 20220671 | |
[13] | Li S. J., Yang Y., Cui Y. Y., Su X. B., Chem. J. Chinese Universities, 2020, 41(7), 1559—1566 |
李士杰, 杨洋, 崔营营, 苏贤斌. 高等学校化学学报, 2020, 41(7), 1559—1566 | |
[14] | Cameron A., Fisher B., Rizzacasa M., Tetrahedron, 2018, 74(12), 1203—1206 |
[15] | Cheng D., Chen F. E., Chemical Industry and Engineering Progress, 2019, 38(1), 556—575 |
程荡, 陈芬儿. 化工进展, 2019, 38(1), 556—575 | |
[16] | Deng H., Liao Q., Lin Y. B., Chin. J. Pharmaceuticals, 2005, 36(3), 140—147 |
邓洪, 廖齐, 林原斌. 中国医药工业杂志, 2005, 36(3), 140—147 | |
[17] | Lindeque R. M., Woodley J. M., Catalysts, 2019, 9(3), 262 |
[18] | Hu Y. J., Chen J., Wang Y. Q., Zhu N., Fang Z., Xu J. H., Guo K., Chem. Eng. J., 2022, 437, 135400 |
[19] | Sugisawa N., Nakamura H., Fuse S., Catalysts, 2020, 10(11), 1321 |
[20] | Campbell Z. S., Parker M., Bennett J. A., Yusuf S., Al-Rashdi A. K., Lustik J., Li F. X., Abolhasani M., Chem. Mater., 2018, 30(24), 8948—8958 |
[21] | Britton J., Raston C. L., Chem. Soc. Rev., 2017, 46(5), 1250—1271 |
[22] | Liu M. L., Wan L., Gao L., Cheng D., Jiang M. F., Chen F. E., ACS Sustain. Chem. Eng., 2023, 11(40), 14682—14690 |
[23] | Feng K. B., Chen J., Gu S. X., Wang H. F., Chen F. E., Chin. J. Org. Chem., 2024, 44(2), 378—397 |
冯康博, 陈炯, 古双喜, 王海峰, 陈芬儿. 有机化学, 2024, 44(2), 378—397 | |
[24] | Baumann M., Baxendale I. R., Beilstein J. Org. Chem., 2015, 11, 1194—1219 |
[25] | Baumann M., Moody T. S., Smyth M., Wharry S., Org. Process Res. Dev., 2020, 24(10), 1802—1813 |
[26] | Duan X. N., Yin J. B., Huang M. M., Wang P. X., Zhang J. S., Chem. Eng. Sci., 2022, 251, 117483 |
[27] | Rahman M. D. T., Wharry S., Smyth M., Manyar H., Moody T. S., Synlett, 2020, 31(6), 581—586 |
[28] | Song Q., Lei X. G., Yang S., Wang S., Wang J. H., Chen J. J., Xiang Y., Huang Q. W., Wang Z. Y., Molecules, 2022, 27(16), 5139 |
[29] | Jiang R., Dong Y. M., Yang J. H., Zhao T. S., Chen X. Q., Speciality Petrochemicals, 2013, 30(1), 12—16 |
蒋锐, 董燕敏, 杨金会, 赵天生, 陈兴权. 精细石油化工, 2013, 30(1), 12—16 | |
[30] | D'Attoma J., Camara T., Brun P. L., Robin Y., Bostyn S., Buron F., Routier S., Org. Process Res. Dev., 2017, 21(1), 44—51 |
[31] | Majeed M. H., Shayesteh P., Tunå P., Persson A. R., Gritcenko R., Wallenberg L. R., Ye L., Hulteberg C., Schnadt J., Wendt O. F., Chem. Eur. J., 2019, 25(59), 13591—13597 |
[32] | Akhtar R., Zahoor A. F., Rasool N., Ahmad M., Ali K. G., Mol. Divers., 2022, 26(3), 1837—1873 |
[33] | Li W. J., Jiang M. F., Liu M. J., Ling X., Xia Y. Q., Wan L., Chen F. E., Chem. Eur. J., 2022, 28(33), e202200700 |
[1] | 张晨阳, 贾晨旭, 黄军. 碳氮复合镍催化剂催化的高选择性己二腈加氢制备环己亚胺[J]. 高等学校化学学报, 2024, 45(4): 20240003. |
[2] | 李学宇, 王朝, 陈雅, 李可可, 李建全, 金顺敬, 陈丽华, 苏宝连. 等离激元共振光转热增强负载纳米金对丁二烯选择性加氢的催化性能[J]. 高等学校化学学报, 2022, 43(10): 20220174. |
[3] | 樊晔, 韩慧慧, 方云, 冯瑞沁, 夏咏梅. 简易合成纳米多层级镍中空亚微球及其催化苯酚加氢的研究[J]. 高等学校化学学报, 2021, 42(6): 1801. |
[4] | 李士杰,杨洋,崔营营,苏贤斌. 微通道连续流动高效绿色合成亮丙瑞林[J]. 高等学校化学学报, 2020, 41(7): 1559. |
[5] | 张因, 郭健健, 王杰, 李海涛, 赵永祥. 以NiAl-NO3-LDH为前驱体制备Ni-Al2O3催化剂及其催化乙酰丙酸加氢性能[J]. 高等学校化学学报, 2019, 40(8): 1686. |
[6] | 闫晓红, 葛霞, 张琳, 齐丽娟, 刘洋, 魏少华, 朱晓舒, 唐亚文. 配位还原制备膦酸功能化Pd/C催化剂及其应用[J]. 高等学校化学学报, 2017, 38(9): 1619. |
[7] | 杨旭, 段爱军, 赵震, 姜桂元, 刘坚, 韦岳长, 李建梅. L/W复合分子筛的合成及在催化裂化汽油加氢改质催化剂中的应用[J]. 高等学校化学学报, 2015, 36(2): 336. |
[8] | 周娅芬, 陈骏如, 李瑞祥, 赵松林, 李贤均. 水溶性含钌-铂双金属催化剂催化卤代芳香硝基化合物选择性加氢[J]. 高等学校化学学报, 2004, 25(5): 884. |
[9] | 李晓红, 尤欣, 梁长海, 张遂之, 魏昭彬, 李绪渊, 李灿. 固定床反应器中丙酮酸乙酯在Pt/γ-Al2O3催化剂上的不对称加氢反应[J]. 高等学校化学学报, 2000, 21(12): 1900. |
[10] | 范荫恒, 廖世健, 徐筠, 钱廷龙, 黄吉玲. 茂钛配合物-纳米氢化钠双组分高活性加氢催化剂的研究[J]. 高等学校化学学报, 1997, 18(10): 1683. |
[11] | 龚跃法, 赵成学, 蒋锡夔. 一系列烷基对二烷氧基苯在不同硝化体系中反应的研究[J]. 高等学校化学学报, 1994, 15(4): 536. |
[12] | 徐之雒, 张景文, 蒋育林, 黄化民. 巴豆醛选择性催化加氢的研究[J]. 高等学校化学学报, 1990, 11(8): 848. |
[13] | 杨士勇, 孙君坦, 李弘, 何炳林. 硅胶负载聚乙烯基吡啶-钯催化剂的制备及其催化加氢性能的研究[J]. 高等学校化学学报, 1990, 11(6): 638. |
[14] | 韩淑芸, 吴志芸, 阚秋斌, 周采菊, 杨君. 磷酸镁铝分子筛的交换与催化性能研究[J]. 高等学校化学学报, 1990, 11(1): 41. |
[15] | 何炳林, 孙君坦, 王俐. 含氮聚合物负载钯络合物的合成及其催化加氢性能的研究[J]. 高等学校化学学报, 1988, 9(9): 945. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||