高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (7): 20240567.doi: 10.7503/cjcu20240567
收稿日期:
2024-12-30
出版日期:
2025-07-10
发布日期:
2025-02-26
通讯作者:
李婧影
E-mail:chenshan331210@163.com;lijingying@fzu.edu.cn
作者简介:
陈 珊, 女, 博士, 助理研究员, 主要从事功能核酸探针构建与生物医学应用方面的研究. E-mail: chenshan331210@163.com
基金资助:
CHEN Shan1,2(), ZHUO Yufei1, LI Jingying1(
)
Received:
2024-12-30
Online:
2025-07-10
Published:
2025-02-26
Contact:
LI Jingying
E-mail:chenshan331210@163.com;lijingying@fzu.edu.cn
Supported by:
摘要:
细胞通讯等动态复杂的生命活动需要多种膜受体的参与. 核酸探针是开发膜受体可视化分析策略的重要分子工具. 本文从非共价靶向识别和共价偶联两种策略类型总结了基于核酸的蛋白标记技术, 系统介绍了这些标记技术在膜受体表达水平、 糖型以及相互作用等重要分子信息的可视化分析方面取得的最新研究进展, 并对该领域的挑战和未来发展方向进行了阐述和展望.
中图分类号:
TrendMD:
陈珊, 卓育妃, 李婧影. 基于核酸的蛋白标记技术在膜受体可视化分析中的应用. 高等学校化学学报, 2025, 46(7): 20240567.
CHEN Shan, ZHUO Yufei, LI Jingying. Nucleic Acid-based Protein Labeling Tools for Visualization of Membrane Receptors. Chem. J. Chinese Universities, 2025, 46(7): 20240567.
Fig.1 Nucleic acid⁃based non⁃covalent target recognition technique(A) Identification of interaction between CD71 and Aptamer⁃XQ⁃2d via molecular dynamics[43]; (B—D) ARP⁃Sgc8c exhibited the enhanced resistance against nuclease[45].(A) Copyright 2019, American Chemical Society; (B—D) Copyright 2022, Wiley-VCH.
Fig.2 Nucleic acid⁃based covalent coupling protein labeling technique(A) Covalent aptamer⁃mediated biotin transfer to specific lysine residues on PTK⁃7[57]; (B) DNA⁃templated glycan labeling strategy minimize steric hindrance on the c⁃Met receptor[59].(A) Open access; (B) Copyright 2021, American Chemical Society.
Fig.3 Receptor expression visualization via nucleic acid⁃based probes(A) Schematic representation of DNA⁃Origami⁃based nanoarrays enhance receptor binding affinity[77]; (B) visualization of multiple receptors on live cell membranes using TAR strategy[80]; (C) schematic representation of thermophoresis⁃mediated DNA computation for profiling of tumor⁃derived EVs[84].(A) Copyright 2023, American Chemical Society; (B) Copyright 2024, Wiley-VCH; (C) Copyright 2021, American Chemical Society.
Fig.4 Schematic representation of receptor⁃selective glycosylation visualization via DNAzyme⁃based cleavage strategy(A) and imaging of the sialylation and fucosylation in PTK⁃7 on different cells(B)[91]Copyright 2023, American Chemical Society.
Fig.5 Glycation of integrin was verified via WB assay(A) and CLSM imaging(B)[92], schematic representation of exoPDL1 glycosylation visualization via nucleic acid probes(C) and the effect of exoPD⁃L1 glycosylation on the recognition and proliferation of CD8+ T cells(D)[95](A, B) Copyright 2022, Wiley⁃VCH; (C, D) Copyright 2021, Wiley⁃VCH.
Fig.6 Schematic representation(A) and CLSM imaging(B) of c⁃Met receptors distribution after ligand stimulation[59], schematic representation(C) and CLSM imaging(D) of “traffic light” for dissecting c⁃Met receptors coordinated with downstream VEGF[108](A, B) Copyright 2021, American Chemical Society; (C, D) Copyright 2022, Wiley⁃VCH.
Fig.7 Schematic representation of receptor interactions visualization via nucleic acid⁃based proximity labeling(A)[111] and CLSM imaging of PD⁃L1⁃targeted proximity labeling in (i) T cell⁃MDA⁃MB⁃231 cell connection and (ii) T cells(B)Copyright 2022, American Chemical Society.
[1] | Li J., Wang L., Tian J., Zhou Z., Li J., Yang H., Chem. Soc. Rev., 2020, 49(5), 1545—1568 |
[2] | Pan L., Fu T. M., Zhao W., Zhao L., Chen W., Qiu C., Liu W., Liu Z., Piai A., Fu Q., Chen S., Wu H., Chou J. J., Cell, 2019, 176(6), 1477—1489 |
[3] | Trenker R., Jura N., Curr. Opin. Cell Biol., 2020, 63, 174—185 |
[4] | Wang M., Yang D., Lu Q., Liu L., Cai Z., Wang Y., Wang H. H., Wang P., Nie Z., Nano Lett., 2022, 22(21), 8445—8454 |
[5] | Wang H., Wang Y., Wan Y., Shang J., Wang Q., Jiang Y., Liu X., Wang F., Adv. Funct. Mater., 2023, 33, 2302708 |
[6] | Pasquale E. B., Nat. Rev. Cancer, 2024, 24(1), 5—27 |
[7] | Gao Y., Luan X., Melamed J., Brockhausen I., Cells, 2021, 10(5), 1252 |
[8] | Simons M., Gordon E., Claesson⁃Welsh L., Nat. Rev. Mol. Cell Biol., 2016, 17(10), 611—625 |
[9] | Olsson A. K., Dimberg A., Kreuger J., Claesson⁃Welsh L., Nat. Rev. Mol. Cell Biol., 2006, 7(5), 359—371 |
[10] | Rist D., DePalma T., Stagner E., Tallman M M., Venere M., Skardal A., Schultz Z D., ACS Sens., 2023, 8(12), 4636—4645 |
[11] | Zhao X., Na N., Ouyang J., Talanta, 2024, 267, 125222 |
[12] | Zhang X., Yin J., Pan W., Li Y., Li N., Tang B., Anal. Bioanal. Chem., 2023, 415(1), 67—82 |
[13] | Lappano R., Maggiolini M., Nat. Rev. Drug Discov., 2010, 10(1), 47—60 |
[14] | Kuai H., Zhao Z., Mo L., Liu H., Hu X., Fu T., Zhang X., Tan W., J. Am. Chem. Soc., 2017, 139(27), 9128—9131 |
[15] | Li Y., Qian M., Cheng Y., Qiu X., Colloid Surface B, 2025, 248, 114486 |
[16] | Christopoulos A., Nat. Rev. Drug Discov., 2002, 1(3), 198—210 |
[17] | Caval T., Alisson⁃Silva F., Schwarz F., Theranostics, 2023, 13(8), 2605—2615 |
[18] | Chatham J. C., Patel R. P., Nat. Rev. Cardiol., 2024, 21(8), 525—544 |
[19] | Chen S., Li J., Liang H., Lin X. H., Li J., Yang H. H., Chemistry, 2018, 24(60), 15988—15992 |
[20] | Chen S., Xu Z., Yang W., Lin X., Li J., Li J., Yang H., Angew. Chem. Int. Ed., 2019, 58(50), 18186—18190 |
[21] | Wang Y., Xiong Y., Song L., He S., Yao F., Wu Y., Shi K., He L., Biomacromolecules, 2023, 24(7), 3228—3236 |
[22] | Li H., Zhang C., Hu Y., Liu P., Sun F., Chen W., Zhang X., Ma J., Wang W., Wang L., Wu P., Liu Z., Nat. Cell Biol., 2021, 23(6), 642—651 |
[23] | Xiao M., Lai W., Man T., Chang B., Li L., Chandrasekaran A. R., Pei H., Chem. Rev., 2019, 119(22), 11631—11717 |
[24] | Ai L., Peng T., Li Y., Kuai H., Sima Y., Su M., Wang D., Yang Q., Wang X. Q., Tan W., Angew. Chem. Int. Ed., 2022, 61(33), e202109500 |
[25] | Tang Q., Lai W., Wang P., Xiong X., Xiao M., Li L., Fan C., Pei H., Angew. Chem. Int. Ed., 2021, 60(27), 15013—15019 |
[26] | Schroder M. S., Harwardt M. I. E., Rahm J. V., Li Y., Freund P., Dietz M. S., Heilemann M., Methods, 2021, 193, 38—45 |
[27] | Wang Y., Baars I., Fordos F., Hogberg B., ACS Nano, 2021, 15(6), 9614—9626 |
[28] | Cremers G. A. O., Rosier B., Meijs A., Tito N. B., Van Duijnhoven S. M. J., Van Eenennaam H., Albertazzi L., De Greef T. F. A., J. Am. Chem. Soc., 2021, 143(27), 10131—10142 |
[29] | Chen B., Wang Y., Ma W., Cheng H., Sun H., Wang H., Huang J., He X., Wang K., Anal. Chem., 2020, 92(22), 15104—15111 |
[30] | Ang Y. S., Li J., Chua P J., Ng C T., Bay B H., Yung L L., Anal. Chem., 2018, 90(10), 6193—6198 |
[31] | Qiu Y., Liu Y., Zheng W., Chen J., Yang Y., He X., Lin C., Ke R., Anal. Chem., 2024, 96(50), 19863—19868 |
[32] | Taura J., Lopez⁃Cano M., Fernandez⁃Duenas V., Ciruela F., Curr. Protoc., 2023, 3(6), e794 |
[33] | Krieger C. C., Boutin A., Neumann S., Gershengorn M. C., Front Endocrinol., 2022, 13, 989626 |
[34] | Sethi S., Hidaka K., Sugiyama H., Endo M., Angew. Chem. Int. Ed., 2021, 60(37), 20342—20349 |
[35] | Stephanopoulos N., Freeman R., North H. A., Sur S., Jeong S. J., Tantakitti F., Kessler J. A., Stupp S. I., Nano Lett., 2015, 15(1), 603—609 |
[36] | Fang T., Alvelid J., Spratt J., Ambrosetti E., Testa I., Teixeira A. I., ACS Nano, 2021, 15(2), 3441—3452 |
[37] | Krissanaprasit A., Key C. M., Pontula S., LaBean T. H., Chem. Rev., 2021, 121(22), 13797—13868 |
[38] | Zhao L., Tang C., Xu L., Zhang Z., Li X., Hu H., Cheng S., Zhou W., Huang M., Fong A., Liu B., Tseng H. R., Gao H., Liu Y., Fang X., Small, 2016, 12(8), 1072—1081 |
[39] | Wei Y., Long S., Zhao M., Zhao J., Zhang Y., He W., Xiang L., Tan J., Ye M., Tan W., Yang Y., Yuan Q., J. Am. Chem. Soc., 2024, 146(1), 319—329 |
[40] | Gao T., Pei R., ACS Appl. Bio. Mater., 2020, 3(10), 7080—7086 |
[41] | Cheng E. L., Cardle II, Kacherovsky N., Bansia H., Wang T., Zhou Y., Raman J., Yen A., Gutierrez D., Salipante S. J., Des Georges A., Jensen M. C., Pun S. H., J. Am. Chem. Soc., 2022, 144(30), 13851—13864 |
[42] | Bi S., Chen W., Fang Y., Wang Y., Zhang Q., Guo H., Ju H., Liu Y., J. Am. Chem. Soc., 2023, 145(9), 5041—5052 |
[43] | Wu X., Liu H., Han D., Peng B., Zhang H., Zhang L., Li J., Liu J., Cui C., Fang S., Li M., Ye M., Tan W., J. Am. Chem. Soc., 2019, 141(27), 10760—10769 |
[44] | Chen J., He J., Bing T., Feng Y., Lyu Y., Lei M., Tan W., Anal. Chem., 2024, 96(26), 10601—10611 |
[45] | Xie S., Wang Z., Fu T., Zheng L., Wu H., He L., Huang H., Yang C., Wang R., Qian X., Qiu L., Tan W., Angew. Chem. Int. Ed., 2022, 61(31), e202201220 |
[46] | Trads J. B., Torring T., Gothelf K. V., Acc. Chem. Res., 2017, 50(6), 1367—1374 |
[47] | Sacca B., Niemeyer, C. M., Chem. Soc. Rev., 2011, 40(12), 5910—5921 |
[48] | Yan X., Zhang H., Wang Z., Peng H., Tao J., Li X. F., Chris Le X., Chem. Commun., 2018, 54, 7491—7494 |
[49] | Liu T., Ma C. J., Yuan B. F., Feng Y. Q., Science China Chemistry, 2018, 61(4), 381—392 |
[50] | Whited J., Zhang X., Nie H., Wang D., Li Y., Sun X. L., ACS Chem. Biol., 2018, 13(9), 2364—2374 |
[51] | Wu J., Li N., Yao Y., Tang D., Yang D., Ongachwa Machuki J., Li J., Yu Y., Gao F., Anal. Chem., 2018, 90(24), 14368—14375 |
[52] | Ghosh P., Chemistry, 2024, 30, (64), e202401983 |
[53] | Shi P., Zhao N., Lai J., Coyne J., Gaddes E. R., Wang Y., Angew. Chem. Int. Ed., 2018, 57(23), 6800—6804 |
[54] | Fu Y., Qian H., Zhou X., Wu Y., Song L., Chen K., Bai D., Yang Y., Li J., Xie G., Anal. Bioanal. Chem., 2021, 413(28), 6929—6939 |
[55] | Liu L., Chen X., Sun B., Anal. Chem., 2022, 94(40), 13745—13752 |
[56] | Chen X., Qiu L., Cai R., Cui C., Li L., Jiang J. H., Tan W., ACS Appl. Mater. Interfaces, 2020, 12(34), 37845—37850 |
[57] | Albright S., Cacace M., Tivon Y., Deiters A., J. Am. Chem. Soc., 2023, 145(30), 16458—16463 |
[58] | Cui C., Zhang H., Wang R., Cansiz S., Pan X., Wan S., Hou W., Li L., Chen M., Liu Y., Chen X., Liu Q., Tan W., Angew. Chem. Int. Ed., 2017, 56(39), 11954—11957 |
[59] | Yang W., Nan H., Xu Z., Huang Z., Chen S., Li J., Li J., Yang H., Anal. Chem. 2021, 93(36), 12265—12272 |
[60] | Lajoie M. J., Boyken S. E., Salter A. I., Bruffey J., Rajan A., Langan R. A., Olshefsky A., Muhunthan V., Bick M. J., Gewe M., Quijano⁃Rubio A., Johnson, J., Lenz G., Nguyen A., Pun S., Correnti C. E., Riddell S. R., Baker D., Science, 2020, 369, 1637—1643 |
[61] | Rajaram P., Chandra P., Ticku S., Pallavi B. K., Rudresh K. B., Mansabdar P., Indian J. Dent. Res., 2017, 28(6), 687—694 |
[62] | Chen K., Mao M., Huo L., Wang G., Pu Z., Zhang Y., ACS Appl. Mater. Interfaces, 2024, 16(23), 29760—29769 |
[63] | Young O., Ngo N., Lin L., Stanbery L., Creeden J. F., Hamouda D., Nemunaitis J., Curr. Probl. Cancer, 2023, 47(1), 100917 |
[64] | Zhang W., Wang H., Sun M., Deng X., Wu X., Ma Y., Li M., Shuoa S. M., You Q., Miao L., Cancer Commun., 2020, 40, 69—80 |
[65] | Strauss S., Nickels P. C., Strauss M. T., Jimenez Sabinina V., Ellenberg J., Carter J. D., Gupta S., Janjic N., Jungmann R., Nat. Methods, 2018, 15(9), 685—688 |
[66] | Yan Q., Cai M., Zhou L., Xu H., Shi Y., Sun J., Jiang J., Gao J., Wang H., Nanoscale Adv., 2019, 1(1), 291—298 |
[67] | Chen J., Li H., Wu Q., Yan Q., Sun J., Liang F., Liu Y., Wang H., Anal. Chem., 2021, 93(2), 936—945 |
[68] | Jing Y., Cai M., Zhou L., Jiang J., Gao J., Wang H., Talanta, 2020, 217, 121037 |
[69] | Li Z., Shen Q., Wang X., Wang X., Yue T., Shu Y., Wang Z., Sensors and Actuators B: Chemical, 2024, 415, 136000 |
[70] | Ma W., Sun H., Chen B., Jia R., Huang J., Cheng H., He X., Huang M., Wang K., Anal. Chem., 2021, 93(43), 14552—14559 |
[71] | Yuan K., Meng H. M., Wu Y., Chen J., Xu H., Qu L., Li L., Li Z., CCS Chemistry, 2022, 4(5), 1597—1609 |
[72] | Jacobson O., Weiss I. D., Wang L., Wang Z., Yang X., Dewhurst A., Ma Y., Zhu G., Niu G., Kiesewetter D. O., Vasdev N., Liang S. H., Chen X., J. Nucl. Med., 2015, 56(11), 1780—1785 |
[73] | Wang L., Jacobson O., Avdic D., Rotstein B. H., Weiss I. D., Collier L., Chen X., Vasdev N., Liang S. H., Angew. Chem. Int. Ed., 2015, 54(43), 12777—12781 |
[74] | Ding D., Zhao H., Wei, D., Yang, Q., Yang C., Wang R., Chen Y., Li L., An S., Xia Q., Huang G., Liu J., Xiao Z., Tan W., Research, 2023, 6, 126 |
[75] | Liu X., Mao D., Song Y., Zhu L., Isak A. N., Lu C., Deng G., Chen F., Sun F., Yang Y., Zhu X., Tan W., Sci. Adv., 2022, 8(2), eabk0133 |
[76] | Hu X., Chi H., Fu X., Chen J., Dong L., Jiang S., Li Y., Chen J., Cheng M., Min Q., Tian Y., Zhang P., J. Am. Chem. Soc., 2024, 146(4), 2514—2523 |
[77] | Mao M., Lin Z., Chen L., Zou Z., Zhang J., Dou Q., Wu J., Chen J., Wu M., Niu L., Fan C., Zhang Y., J. Am. Chem. Soc., 2023, 145(9), 5447—5455 |
[78] | Fan Y., Li L., Lu M., Si H., Tang B., Chem. Commun., 2019, 55(28), 4043—4046 |
[79] | Chen B., Ma W., Long X., Cheng H., Sun H., Huang J., Jia R., He X., Wang K., Anal. Chem., 2022, 94(5), 2502—2509 |
[80] | Diao N., Hou J., Peng X., Wang Y., He A., Gao H., Yang L., Guo P., Wang J., Han D., Angew. Chem. Int. Ed., 2024, 63(40), e202406330 |
[81] | Bo B., Li W., Li J., Han C., Fang Q., Yang M., Ni J., Zhou C., ACS Appl. Mater. Interfaces, 2023, 15(14), 17696—17704 |
[82] | Tian F., Zhang S., Liu C., Han Z., Liu Y., Deng J., Li Y., Wu X., Cai L., Qin L., Chen Q., Yuan Y., Liu Y., Cong Y., Ding B., Jiang Z., Sun J., Nat. Commun., 2021, 12(1), 2536 |
[83] | Zhang Q., Ma R., Zhang Y., Zhao J., Wang Y., Xu Z., ACS Sens., 2023, 8(2), 875—883 |
[84] | Li Y., Deng J., Han Z., Liu C., Tian F., Xu R., Han D., Zhang S., Sun J., J. Am. Chem. Soc., 2021, 143(3), 1290—1295 |
[85] | Li N., Zhang W., Lin L., Shah S. N. A., Li Y., Lin J. M., Anal. Chem., 2019, 91(4), 2600—2604. |
[86] | Jiang H., Lopez⁃Aguilar A., Meng L., Gao Z., Liu Y., Tian X., Yu G., Ovryn B., Moremen K. W., Wu P., Angew. Chem. Int. Ed., 2018, 57(4), 967—971 |
[87] | Yuan Y., Wu L., Shen S., Wu S., Burdick M. M., Life Sci., 2016, 149, 138—145 |
[88] | Li S., Mao A., Huo F., Wang X., Guo Y., Liu L., Yan C., Ding L., Ju H., Materials Today, 2021, 49, 85—96 |
[89] | Li J., Liu S., Sun L., Li W., Zhang S. Y., Yang S., Li J., Yang H. H., J. Am. Chem. Soc., 2018, 140(48), 16589—16595 |
[90] | Liu Z., Liang Y., Cao W., Gao W., Tang B., Anal. Chem., 2021, 93(25), 8915—8922 |
[91] | Li T., Xing S., Liu Y., Anal. Chem., 2023, 95(48), 17790—17797 |
[92] | Shao Z., Yuan H., Zhou Z., Wang Y., Hou P., Nan H., Wang W., Tan W., Li J., Angew. Chem. Int. Ed., 2022, 61(41), e202210069 |
[93] | Kang S., Zhu L., Wang W., Lu Y., You Z., Zhang C., Xu Y., Yang C., Song Y., Science China Chemistry, 2022, 65(6), 1204—1211 |
[94] | Xu L., Lu S., Wang H., Xu H., Ye B. C., Anal. Chem., 2023, 95(42), 15745—15754 |
[95] | Zhu L., Xu Y., Wei X., Lin H., Huang M., Lin B., Song Y., Yang C., Angew. Chem. Int. Ed., 2021, 60(33), 18111—18115 |
[96] | Lemmon M. A., Schlessinger J., Cell, 2010, 141(7), 1117—1134 |
[97] | Zhang L., Chu M., Ji C., Wei J., Yang Y., Huang Z., Tan W., Tan J., Yuan Q., Anal. Chem., 2022, 94(50), 17413—17421 |
[98] | Ogorek A. N., Zhou X., Martell J. D., J. Am. Chem. Soc., 2023, 145(30), 16913—16923 |
[99] | Liang H., Chen S., Li P., Wang L., Li J., Li J., Yang H. H., Tan W., J. Am. Chem. Soc., 2018, 140(12), 4186—4190 |
[100] | Wang L., Li W., Sun J., Zhang S. Y., Yang S., Li J., Li J., Yang H. H., Anal. Chem., 2018, 90(24), 14433—14438 |
[101] | Kan A., Liu, X., Xu X., Zhang N., Jiang, W., Chem. Commun., 2020, 56(87), 13405—13408 |
[102] | Zhao X., Han Q., Na N., Ouyang J., Anal. Chem., 2021, 93(43), 14514—14520 |
[103] | Xu L., Zhou Z., Gou X., Shi W., Gong Y., Yi M., Cheng W., Song F., Biosens. Bioelectron., 2021, 179, 113064 |
[104] | Niederauer C., Nguyen C., Wang⁃Henderson M., Stein J., Strauss, S., Cumberworth, A., Stehr F., Jungmann R., Schwille P., Ganzinger K. A., Nat. Commun., 2023, 14(1), 4345 |
[105] | Ferapontov A., Omer M., Baudrexel I., Nielsen J. S., Dupont D. M., Juul⁃Madsen K., Steen P., Eklund A. S., Thiel S., Vorup⁃Jensen T., Jungmann R., Kjems J., Degn S. E., Nat. Commun., 2023, 14(1), 976 |
[106] | Riera R., Archontakis E., Cremers G., De Greef T., Zijlstra P., Albertazzi L., ACS Sens., 2023, 8(1), 80—93 |
[107] | Harwardt M. I. E., Schroder M. S., Li Y., Malkusch S., Freund P., Gupta S., Janjic N., Strauss S., Jungmann R., Dietz M. S., Heilemann M., Int. J. Mol. Sci., 2020, 21(8), 2803 |
[108] | Chen S., Xu Z., Li S., Liang H., Zhang C., Wang Z., Li J., Li J., Yang H., Angew. Chem. Int. Ed., 2022, 61(11), e202113795 |
[109] | Dong C., Fang X., Xiong J., Zhang J., Gan H., Song C., Wang L., ACS Nano, 2022, 16(9), 14055—14065 |
[110] | Wang J., Song J., Zhang X., Wang S. M., Kang B., Li X. L., Chen H. Y., Xu J. J., J. Am. Chem. Soc., 2023, 145(2), 1273—1284 |
[111] | Yang W., Huang Z., Xu Z., Ma X., Huang S., Li J., Li J., Yang H., Anal. Chem., 2022, 94(2), 1101—1107 |
[1] | 刘钰鹏, 杨钧翔, 郝一鸣, 曲松楠. 近红外吸收/发光碳点的研究进展[J]. 高等学校化学学报, 2025, 46(6): 20240070. |
[2] | 杨倩, 屠鹏, 郝振芳, 崔彦君, 边红霞. 荧光探针对植物组织乙烯释放的监测及在白熟期番茄中的应用[J]. 高等学校化学学报, 2025, 46(5): 20240517. |
[3] | 陈壹刘, 宗洪凤, 段兆龙, 张一鹏, 高妍, 李超, 刘洋, 高云. 基于锌配合物的一氧化氮荧光探针的构建及其细胞成像[J]. 高等学校化学学报, 2025, 46(2): 20240370. |
[4] | 朱宣祺, 崔丽影, 赵欣宇, 姜玲, 张雪. Fe3+掺杂的聚氨基吡咯纳米粒子用于原位乳腺癌的磁共振成像和光热治疗[J]. 高等学校化学学报, 2025, 46(1): 20240156. |
[5] | 王天缘, 张华真, 赵聘, 王凯, 林敏. 海藻酸钠稳定金纳米簇的肾脏清除[J]. 高等学校化学学报, 2025, 46(1): 20240135. |
[6] | 李滨汐, 张燕, 姚栋. 具有磁共振/荧光双模式成像功能的Fe3O4/CuInS2二元超粒子[J]. 高等学校化学学报, 2025, 46(1): 20240274. |
[7] | 李红雨, 张洪新. 新型稀土近红外荧光探针用于活体多重成像[J]. 高等学校化学学报, 2024, 45(12): 20240181. |
[8] | 续红妹, 王梁臣, 闵乾昊. 面向小分子检测的MALDI MS基质研究进展[J]. 高等学校化学学报, 2024, 45(11): 20240285. |
[9] | 孙菁华, 郭春燕, 董杰, 张瑞平. 黑色素基靶向纳米药物用于乳腺癌的光热治疗[J]. 高等学校化学学报, 2023, 44(8): 20230044. |
[10] | 李婷, 邢思敏, 刘洋. 无酶级联催化发夹自组装和杂交链反应信号放大细胞表面特定蛋白糖基化高灵敏成像分析和高效光动力治疗[J]. 高等学校化学学报, 2023, 44(8): 20230140. |
[11] | 徐若韬, 王强, 鲍庆嘉, 王伟宇, 张志, 刘朝阳, 徐君, 邓风. γ -Al2O3颗粒溶液浸润过程的原位磁共振成像[J]. 高等学校化学学报, 2023, 44(4): 20220587. |
[12] | 顾亚琴, 丁劲峰, 陈金娥, 谢文娜, 肖林霞. 咔唑近红外荧光探针可视化线粒体及体内成像应用[J]. 高等学校化学学报, 2023, 44(12): 20230367. |
[13] | 郝强军, 叶子, 温蓓, 彭汉勇. 核酸介导功能纳米材料的合成方法及应用[J]. 高等学校化学学报, 2023, 44(10): 20230125. |
[14] | 陈尚钰, 沈清明, 孙鹏飞, 范曲立. 小分子基温敏聚合物纳米粒子的制备及在近红外二区荧光成像与光热治疗中的应用[J]. 高等学校化学学报, 2022, 43(12): 20220392. |
[15] | 汤乔伟, 蔡小青, 李江, 诸颖, 王丽华, 田阳, 樊春海, 胡钧. 同步辐射X射线成像技术在脑成像研究中的应用[J]. 高等学校化学学报, 2022, 43(12): 20220379. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||