高等学校化学学报 ›› 2017, Vol. 38 ›› Issue (2): 275.doi: 10.7503/cjcu20160650
收稿日期:
2016-09-19
出版日期:
2017-02-10
发布日期:
2017-01-12
作者简介:
联系人简介: 鲁 路, 女, 博士, 副研究员, 主要从事功能高分子材料研究. E-mail: 基金资助:
WANG Zhengguang, HU Duo, WU Dongwei, LU Lu*(), ZHOU Changren*(
)
Received:
2016-09-19
Online:
2017-02-10
Published:
2017-01-12
Contact:
LU Lu,ZHOU Changren
E-mail:tlulu@jnu.edu.cn;tcrz9@jnu.edu.cn
Supported by:
摘要:
针对结冷胶脆性较大的问题, 将聚乙二醇丙烯酸酯(PEGDA)引入结冷胶, 通过紫外交联制备了结冷胶/PEGDA双网络凝胶, 并对单组分凝胶和双网络凝胶的溶胀性能、 微观形貌、 拉伸力学性能、 动态压缩性能和流变性能等进行比较. 结果表明, 双网络凝胶在类生理环境中具有较小的溶胀率和较好的尺寸稳定性, PEGDA的引入能够大幅度提高结冷胶的韧性, 双网络凝胶的拉断伸长率可达340%, 断裂能达1.01×103 J/m2, 与天然关节软骨相当. 将成纤维细胞种植在凝胶内部进行体外三维立体培养, 结果显示, 细胞在凝胶内部生存状态良好, 双网络凝胶的细胞负载率高于单网络结冷胶, 说明该体系在生物医用领域具有良好的应用前景.
中图分类号:
TrendMD:
汪争光, 胡朵, 吴东蔚, 鲁路, 周长忍. 结冷胶与聚乙二醇丙烯酸酯双网络凝胶的制备及生物相容性评价. 高等学校化学学报, 2017, 38(2): 275.
WANG Zhengguang, HU Duo, WU Dongwei, LU Lu, ZHOU Changren. Preparation and Properties of Double Network Hydrogels Based on Gellan Gum and Polyethylene Glycol Acrylate†. Chem. J. Chinese Universities, 2017, 38(2): 275.
Fig.4 Angular frequency dependence of storage modulus G'(solid)and loss modulus G″(hollow) for single- and double-network hydrogels(A) and double-network hydrogel with different UV irradiation time(B)
Fig.10 Live/dead staining of the encapsulated cells in the hydrogels GG(A1—C1) and PG(A2—C2) indicates high cell viability after cultured for 3 d(A1, A2) and 5 d(B1, B2) and 7 d(C1, C2)Green: live cells; red: dead cells.
[1] | Jansson P. E., Kumar N. S., Lindberg B., Carbohydr. Res., 1986, 156, 165—172 |
[2] | Nishinari K., Progress in Colloid Polymer Science, Vol .114, Physical Chemistry and Industrial Application of Gellan Gum, Springer, Berlin, 2003, 68—82 |
[3] | Morris E. R., Gothard M. G. E., Hember M. W. N., Manning C. E., Robinson G., Carbohydrate Polymers,1996, 30(2/3), 165—175 |
[4] | Wen Y., Zhao G.H.,China Food Additives, 2003, (3), 49—52 |
(文一, 赵国华. 中国食品添加剂, 2003, (3), 49—52) | |
[5] | Zhao M.M., Peng Z. Y.,Science and Technology of Food Industry, 1996, (6), 71—75 |
(赵谋明, 彭志英.食品工业科技. 1996, (6), 71—75) | |
[6] | Hu G.H., Functional Food Gum, Chemical Iudustry Press, Beijing, 2005, 230—263 |
(胡国华. 功能性食品胶, 北京: 化学工业出版社, 2005, 230—263) | |
[7] | Mao R., Tang J., Swanson B., Carbohydrate Polymers,2001, 46(4), 365—371 |
[8] | Suri S., Banerjee R., Journal of Biomedical Materials Research Part A,2006, 79(3), 650—664 |
[9] | Ying K.,Food Industry, 2004, (4), 60—62 |
(应恺. 食品工业. 2004, (4), 60—62) | |
[10] | Su J., Yang Y.Z., Hu L. X.,Academic Periodical of Farm Products Processing, 2008, (11), 60—62 |
(苏杰, 杨月珍, 胡立新. 农产品加工·学刊, 2008, (11), 60—62) | |
[11] | Danalache F., Beirão-Da-Costa S., Mata P., Alves V. D., Moldão-Martins M., Lebensmittel-Wissenschaft und-Technologie,2014, 62(1), 584—591 |
[12] | Goh K. K. T., Yuliarti O., Yeo G. T. T., Cheng C. O., Food Hydrocolloids,2015, 49, 240—247 |
[13] | Liu H., Sun Y. Z., Su G. Y., Zhao L. Y., A Production Method of Liquid Dairy Products Containing Gellan Gum Particles, CN 101427724 A,2009-05-13 |
(刘华, 孙远征, 苏桄宇, 赵六永. 含结冷胶颗粒的液态乳制品及其生产方法, CN 101427724 A, 2009-05-13) | |
[14] | Aust D. T., Jones D. P., Jovanovic A. V., Kulkarni V., Kumar P., Shi L., Water-in-oil Emulsion Compositions Containing Gellan Gum for Topical Delivery of Active Ingredients to the Skin or Mucosa, US 9132291,2015-09-15 |
[15] | Ohkawa K., Kitagawa T., Yamamoto H., Macromolecular Materials & Engineering,2004, 289(1), 33—40 |
[16] | Vijan V., Kaity S., Biswas S., Isaac J., Ghosh A., Carbohydrate Polymers,2012, 90(1), 496—506 |
[17] | Matricardi P., Cencetti C., Ria R., Alhaique F., Coviello T., Molecules,2009, 14(9), 3376—3391 |
[18] | Babu R. J., Sathigari S., Kumar M. T., Pandit J. K., Current Drug Delivery,2010, 7(1), 36—43 |
[19] | Kulkarni R. V., Mangond B. S., Mutalik S., Sa B., Carbohydrate Polymers,2011, 83(2), 1001—1007 |
[20] | Vieira S., Vial S., Maia F. R., Carvalho M., Rui L. R., Granja P. L., Oliveira J. M., Rsc. Advances,2015, 5(95), 77996—78005 |
[21] | Posadowska U., Brzychczy-Wloch M., Pamula E., Journal of Materials Science Materials in Medicine,2016, 27(1), 1—9 |
[22] | Khang G., Lee S., Kim H., Silva-Correia J., Gomes M., Viegas C., Dias I., Oliveira J. M., Reis R., Journal of Tissue Engineering & Regenerative Medicine.2015, 9, 265—275 |
[23] | Douglas T. E. L., Pilarz M., Lopez-Heredia M., Brackman G., Schaubroeck D., Balcaen L., Bliznuk V., Dubruel P., Knabe-Ducheyne C., Vanhaecke F., Coenye T., Pamula E., Journal of Tissue Engineering & Regenerative Medicine.2015, 102(2), 129—138 |
[24] | Mouser V. H., Melchels F. P., Visser J., Dhert W. J., Gawlitta D., Malda J., Biofabrication,2016, 8(3), 035003 |
[25] | Ferris C. J., Stevens L. R., Gilmore K. J., Mume E., Greguric I., Kirchmajer D. M., Wallace G. G., J. Mater. Chem. B,2014, 3(6), 1106—1115 |
[26] | Smith A. M., Shelton R., Perrie Y., Harris J. J., Journal of Biomaterials Applications,2007, 2(3), 241—254 |
[27] | Oliveira J. T., Martins L., Picciochi R., Malafaya P., Sousa R., Neves N., Mano J. F., Reis R. L., Journal of Biomedical Materials Research Part A,2010, 93(3), 852—863 |
[28] | Silva-Correia J., Miranda-Gonçalves V., Salgado A. J., Sousa N., Oliveira J. M., Reis R. M., Reis R. L., Tissue Engineering Part A,2012, 18(11/12), 1203—1212 |
[29] | Min H., Kennedy J. F., Li B., Xiao X., Xie B. J., Carbohydrate Polymers,2007, 69(3), 411—418 |
[30] | Kozak C., Peters G., Pauley R., Morris V., Michalides R., Dudley J., Journal of Virology,1987, 61(5), 1651—1654 |
[31] | Kawai S., Nitta Y., Nishinari K., Journal of Chemical Physics,2008, 128(13), 134903—134909 |
[32] | Sudhamani S., Prasad M., Sankar K. U., Food Hydrocolloids,2003, 17(3), 245—250 |
[33] | Alupei I. C., Popa M., Bejenariu A., Vasiliu S., Alupei V., Eur. Polym. J., 2006, 42(4), 908—916 |
[34] | Morrison N.A., Clark R. C., Chen Y. L., Talashek T., Sworn G., Gelatin Alternatives for the Food Industry, Springer, Berlin, 1999, 127—131 |
[35] | Matricardi P., Cencetti C., Ria R., Alhaique F., Coviello T., Molecules,2009, 14(9), 3376—3391 |
[36] | Agnihotri S. A., Aminabhavi T. M., Drug Development & Industrial Pharmacy,2005, 31(6), 491—503 |
[37] | Coutinho D. F., Sant S. V., Shin H., Oliveira J. T., Gomes M. E., Neves N. M., Khademhosseini A., Reis R. L., Biomaterials,2010, 31(29), 7494—7502 |
[38] | Shin H., Olsen B. D., Khademhosseini A., Biomaterials,2012, 33(11), 3143—3152 |
[39] | Tang Y., Sun J., Fan H., Zhang X., Carbohydrate Polymers,2012, 88(1), 46—53 |
[40] | Bakarich S. E., Pidcock G. C., Balding P., Stevens L., Calvert P., Soft Matter,2012, 8(39), 9985—9988 |
[41] | DeLong S. A., Moon J. J., West J. L., Biomaterials,2005, 26(16), 3227—3234 |
[42] | Osmałek T., Froelich A., Tasarek S., Int. J. Pharm., 2014, 466(1/2), 328—340 |
[43] | Morris E. R., Nishinari K., Rinaudo M., Food Hydrocolloids,2012, 28(2), 373—411 |
[44] | Gong J. P., Soft Matter, 2010, 6(12), 2583—2590 |
[45] | Brown H. R., Macromolecules, 2007, 40(10), 3815—3818 |
[46] | Webber R. E. W., Creton C., Brown H. R., Gong J. P., Macromolecules,2007, 40(8), 2919—2927 |
[47] | Kawai S., Nitta Y., Nishinari K., Journal of Applied Physics,2007, 102(4), 043507—043509 |
[1] | 矫龙, 代学民, 牟建新, 杜志军, 王汉夫, 董志鑫, 邱雪鹏. 柔性OLED用高耐热聚酰亚胺薄膜的制备与性能[J]. 高等学校化学学报, 2022, 43(11): 20220390. |
[2] | 徐欢, 柯律, 唐梦珂, 尚涵, 徐文轩, 张子林, 付亚男, 韩广东, 崔金声, 杨皓然, 高杰峰, 张生辉, 何新建. 液相剪切原位剥离蒙脱土纳米片增强高阻氧聚乳酸[J]. 高等学校化学学报, 2022, 43(11): 20220316. |
[3] | 杨伟明, 席澳千, 杨斌, 曾艳宁. 基于多重动态共价键的环氧类玻璃网络的制备与性能[J]. 高等学校化学学报, 2022, 43(11): 20220308. |
[4] | 常斯惠, 陈涛, 赵黎明, 邱勇隽. 离子液体增塑生物基聚丁内酰胺的热分解机理[J]. 高等学校化学学报, 2022, 43(11): 20220353. |
[5] | 张涛, 邵亮, 张梦辉, 马忠雷, 李晓强, 马建中. 双功能聚二甲基硅氧烷/铜纳米线复合薄膜的制备与性能[J]. 高等学校化学学报, 2022, 43(11): 20220359. |
[6] | 颜舒婷, 姚远, 陶鑫峰, 林绍梁. 含硫正离子聚类肽水凝胶的合成与性能[J]. 高等学校化学学报, 2022, 43(11): 20220381. |
[7] | 谭乐见, 仲宣树, 王锦, 刘宗建, 张爱英, 叶霖, 冯增国. β-环糊精的低临界溶解温度现象及其在有序纳米孔道片晶制备中的应用[J]. 高等学校化学学报, 2022, 43(11): 20220405. |
[8] | 高慧玲, 曹珍珍, 顾芳, 王海军. 氢键型水凝胶自修复行为的Monte Carlo模拟[J]. 高等学校化学学报, 2022, 43(11): 20220482. |
[9] | 王寿柏, 吴修明, 束辰, 钟敏, 黄卫, 颜德岳. 含叔丁基聚酰亚胺均质膜的气体分离性能[J]. 高等学校化学学报, 2022, 43(11): 20220357. |
[10] | 贾红军, 张佳涛, 马卓利, 王恒, 杨欣瑜, 杨加志. 丙烯酸水溶液聚合法制备PTFE/PAA/Nafion膜及其性能[J]. 高等学校化学学报, 2022, 43(11): 20220350. |
[11] | 朱歌 李知涵 刘堃 孙天盟. 铝纳米粉末活化树突状细胞的作用[J]. 高等学校化学学报, 0, (): 20220602. |
[12] | 李吉辰, 蔡珊珊, 彭巨擘, 李宏飞, 段晓征. 电场下离子型聚合物复合囊泡结构变化的分子动力学模拟研究[J]. 高等学校化学学报, 0, (): 20220553. |
[13] | 周仕杰 赵莹 牛瑞 徐博 薛东芝 王樱蕙 张洪杰. 新型可降解纳米药物ZnO2@Fe3+-TA@PVP用于肿瘤的化学动力学治疗[J]. 高等学校化学学报, 0, (): 20220554. |
[14] | 李伦, 张静妍, 罗静, 刘仁, 朱乙. UV/Vis-LED激发的香豆素吡啶鎓盐光引发剂的合成及性能[J]. 高等学校化学学报, 2022, 43(10): 20220178. |
[15] | 许文哲, 张皓. 超分子相互作用主导的纳米药物成核[J]. 高等学校化学学报, 2022, 43(10): 20220264. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||