高等学校化学学报 ›› 2005, Vol. 26 ›› Issue (8): 1507.

• 研究论文 • 上一篇    下一篇

SARS冠状病毒E蛋白的结构研究及功能预测

邵琛1, 胡冬华1,5, 孙海珠1, 颜力楷1, 苏忠民1,4, 王荣顺1, 朱文圣1, 郭建华2, 史宁中2, 孙晖3, 李泽生4, 孙家锺4   

  1. 1. 东北师范大学化学学院功能材料化学研究所, 长春130024;
    2. 东北师范大学数学系, 长春130024;
    3. 东北师范大学生命科学学院, 长春130024;
    4. 吉林大学理论化学研究所, 理论化学与计算国家重点实验室, 长春130012;
    5. 长春中医学院药学院, 长春130021
  • 收稿日期:2004-08-03 出版日期:2005-08-10 发布日期:2005-08-10
  • 通讯作者: 苏忠民(1960年出生),男,博士,教授,博士生导师,主要从事量子化学和功能材料化学研究.E-mail:zm su@nenu.edu.cn E-mail:zm su@nenu.edu.cn
  • 基金资助:

    国家自然科学基金(批准号:20243003,20160025);吉林省杰出青年基金(批准号:20005511)资助.

Structure Exploration and Function Prediction of SARS Coronavirus E Protein

SHAO Chen1, HU Dong-Hua1,5, SUN Hai-Zhu1, YAN Li-Kai1, SU Zhong-Min1,4, WANG Rong-Shun1, ZHU Wen-Sheng1, GUO Jian-Hua2, SHI Ning-Zhong2, SUN Hui3, LI Ze-Sheng4, SUN Chia-Chung4   

  1. 1. Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China;
    2. Department of Mathematics, Northeast Normal University, Changchun 130024, China;
    3. School of Life Scineces, Northeast Normal University, Changchun 130024, China;
    4. State Key Laboratory of Theoretical Chemistry and Computation, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, China;
    5. College of Medicine Science, Traditional Chinese Medicine University of Changchun, Changchun 130021, China
  • Received:2004-08-03 Online:2005-08-10 Published:2005-08-10

摘要: 结合生物信息学方法及分子模拟手段,选择较高准确度的方法,预测了SARSE蛋白的分子结构并探讨其潜在的生物学活性和功能.研究结果表明,SARSE蛋白跨膜区25个疏水的氨基酸形成α-螺旋结构,包埋于病毒外壳磷脂双分子层中;N端10个氨基酸残基位于膜外;C端41个残基则附着于磷脂双分子膜内侧.同时发现,C端由9个氨基酸组成的劈裂是一个可能的活性部位.对分子进行进一步静电势分析证实,E蛋白C端可能的活性部位具有较大的静电势,可能的活性残基具有最大电荷密度,故有较强的结合受体或与其它蛋白相互作用的能力.

关键词: SARS冠状病毒, E蛋白, 结构预测, 生物信息学, 静电势

Abstract: SARS E protein has long been taken only as membrane component of coronavirus. However, the researches have revealed that E proteins play an important multifunctional role in coronavirus virion life cycle. This investigation aims at exploring the three-dimensional(3D) structure of SARS E protein, especially for the loop region of its functional potential. As a result, a possible active site is found to be a cleavage in the C terminal, which is made up of nine amino acids. Additionally, the electrostatic property was employed to conform the possible active site. Electrostatic potential analysis prove that the active site really possesses the largest electrostatic property among the whole molecule domain, accordingly it will have a larger charge deposition and therefore may have stronger capabilities of interaction with possible ligand as well as other protein. The simulation results are helpful to providing insights into understanding the functions of SARS E protein and establishing molecular models for screening anti-SARS drug design.

Key words: SARS-Coronavirus, E protein, Structure prediction, Bioinformatics, Electrostatic energy

中图分类号: 

TrendMD: