| [1] |
Rolka P., Przybylinski T., Kwidzinski R., Lackowski M., Renewable Energy, 2021, 172, 541—550
|
| [2] |
Bauer T., Pfleger N., Breidenbach N., Eck M., Laing D., Kaesche S., Applied Energy, 2013, 111, 1114—1119
|
| [3] |
Liu J., Xiao X., Energy, 2023, 282, 128732
|
| [4] |
Mazo J., Delgado M., Marin J. M., Zalba B., Energy Build., 2012, 47, 458—466
|
| [5] |
Zhou W., Yang Z., Feng Y., Lin L., Int. J. Heat Mass Transfer, 2022, 198, 123422
|
| [6] |
Tamme R., Bauer T., Buschle J., Laing D., Müller‐Steinhagen H., Steinmann W. D., Int. J. Energy Res., 2008, 32, 264—271
|
| [7] |
Pfleger N., Braun M., Eck M., Bauer T., Energy Procedia, 2015, 69, 988—996
|
| [8] |
Chen S. H., Cheng X. M., Li Y. Y., Wang X. L., Zheng H. H., Zhong H., Int. J. Energy Res., 2020, 44, 10008—10022
|
| [9] |
Carling R. W., Thermochim. Acta, 1983, 60, 265—275
|
| [10] |
Chieruzzi M., Cerritelli G. F., Miliozzi A., Kenny J. M., Torre L., Sol. Energy Mater. Sol. Cells, 2017, 167, 60—69
|
| [11] |
Goodwin H. M., Kalmus H. T., Phys. Rev., 1909, 28, 1—24
|
| [12] |
Kawakami M., Suzuki K., Yokoyama S., Takenaka T., Heat Capacity Measurement of Molten NaNO3 NaNO2 KNO3 by Drop Calorimetry, In VII International Conference on Molten Slags Fluxes and Salts, South African Institute of Mining and Metallurgy Fifth Floor, Johannesburg, 2004, 201—207
|
| [13] |
Reinsborough V. C., Wetmore F. E. W., Aust. J. Chem., 1966, 20, 1—8
|
| [14] |
Sun Y., Tan Z. C., Yin A. X., Chen S. X., Zhou L. X., Bull. Sci. Technol., 1989, 5, 24—29
|
|
孙毅, 谭志诚, 尹安学, 陈淑霞, 周立幸. 科技通报, 1989, 5, 24—29
|
| [15] |
Ma J., Guo J., Ahmad S., Li Z., Hong J., Remote Sens., 2020, 12, 937
|
| [16] |
El⁃Ashram T., Radiat. Eff. Defects Solids, 2006, 161, 193—197
|
| [17] |
Sun L. W., Li X. L., Tang C. M., Acta Phys. Chim. Sin., 2016, 32, 2327—2336
|
|
孙良伟, 李新利, 唐聪明. 物理化学学报, 2016, 32, 2327—2336
|
| [18] |
Barin I., In Thermochemical Data of Pure Substances, 3 ed., VCH, Federal Republic of Germany, 2008, Vol. 1, 906—1128
|
| [19] |
Rao K. M. P., Prabhu K. N., Mater. Eng. Perform., 2020, 29, 1860—1868
|
| [20] |
Tripi V., Sau S., Tizzoni A. C., Mansi E., Spadoni A., Corsaro N., D’Ottavi C., Capocelli M., Licoccia S., Delise T., J. Energy Storage, 2021, 33, 102065
|
| [21] |
Takahashi Y., Sakamoto R., Kamimoto M., Int. J. Thermophys., 1988, 9(6), 1081—1090
|
| [22] |
Qiao G., Lasfargues M., Alexiadis A., Ding Y., Appl. Therm. Eng., 2017, 111, 1517—1522
|
| [23] |
Zhang H., The Modification Research of Ternary Nitrates, Wuhan University of Technology, Wuhan, 2014
|
|
张晗. 三元硝酸盐的改性研究, 武汉: 武汉理工大学, 2014
|
| [24] |
McConohy G., Kruizenga A., Solar Energy, 2014, 103, 242—252
|
| [25] |
Costa S. C., Mahkamov K., Kenisarin M., Ismail M., Lynn K., Halimic E., Mullen D., J. Energy Res. Technol., 2019, 142, 31203—31209
|
| [26] |
Huang Y., Effect of in⁃situ Synthesized Nanoparticles on Thermal Properties of NaNO3⁃KNO3, Wuhan University of Technology, Wuhan, 2018
|
|
黄毅. 原位合成纳米颗粒对Solar salt热物理性能的影响, 武汉: 武汉理工大学, 2018
|
| [27] |
Kourkova L., Svoboda R., Sadovska G., Podzemna V., Kohutova A., Thermochim. Acta, 2009, 491, 80—83
|
| [28] |
Agyenim F., Hewitt N., Eames P., Smyth M., Renewable Sustainable Energy Rev., 2010, 14, 615—628
|
| [29] |
Orozco M. A., Acurio K., Vásquez⁃Aza F., Martínez⁃Gómez J., Chico⁃Proano A., Materials, 2021, 14, 7223
|