高等学校化学学报

• 研究论文 • 上一篇    下一篇

BDD电极对PFAS的电化学去除研究:硼掺杂水平和碳链长度的影响

张森崇1,2,吕继涛2,王森1 ,吕继磊3,王少龙4,王亚韡2,5   

  1. 1. 西北大学城市与环境学院

    2. 中国科学院生态环境研究中心,环境化学与生态毒理学国家重点实验室

    3. 湖北碳六科技有限公司

    4. 中国石油集团工程材料研究院有限公司

    5. 国科大杭州高等研究院环境学院

  • 收稿日期:2025-04-02 修回日期:2025-04-27 网络首发:2025-04-28 发布日期:2025-04-28
  • 通讯作者: 王森 E-mail:wangsen@nwu.edu.cn
  • 基金资助:
    中国科学院战略性先导科技专项B类(批准号:XDB0750000)和国科大杭州高等研究院专项资金(批准号:2024HIAS-P001)资助

Electrochemical Removal of PFAS by BDD Electrode: Effect of Boron Doping Level and Carbon Chain Length

ZHANG Senchong1,2, LV Jitao2, WANG Sen1, LV Jilei3, WANG Shaolong4,WANG Yawei2,5   


  1. 1. College of Urban and Environmental Sciences, Northwest University 2. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences 3. Hubei Carbon Six Technology Co.
    4.Tubular Goods Research Institute of CNPC

    5. School of Environment, Hangzhou Institute for Advanced Study, UCAS
  • Received:2025-04-02 Revised:2025-04-27 Online First:2025-04-28 Published:2025-04-28
  • Contact: Wang Sen E-mail:wangsen@nwu.edu.cn
  • Supported by:
    Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB0750000) and Research Funds of Hangzhou Institute for Advanced Study, UCAS (No. 2024HIAS-P001)

摘要: 本研究采用微波等离子化学气相沉积技术以铌片作为基底制备了六种不同硼掺杂水平的掺硼金刚石(Nb/BDD)电极,探究了不同硼掺杂水平对Nb/BDD电极电化学性能及其氧化全氟辛酸(PFOA)的影响并将其应用于不同PFASs的电化学去除中。结果表明:随着硼掺杂水平的增加,Nb/BDD薄膜的晶粒尺寸逐渐减小,电极表面的电子转移速率逐渐增加,但薄膜质量下降导致其脱落率增加。Na2SO4作为电解质,在30 mA?cm-2电流密度下,以Nb/BDD电极为阳极能够在120 min内使PFOA的降解率达到78.3%,矿化率在240 min内达到78.1%。在制备的六种不同掺硼水平Nb/BDD电极中,中低掺杂的Nb/BDD电极对PFOA具有更高降解和矿化能力,说明通过调控BDD的硼掺杂水平可实现PFAS的高效电化学去除。对降解产物的分析表明PFOA的电化学降解遵循碳链逐级去除的规律,其中阳极与污染物之间的直接电子转移是降解的关键起始步。通过对不同链长全氟磺酸(PFSA)和全氟羧酸(PFCA)的电化学降解发现,碳链长度与PFAS的降解率和矿化率呈反比,因此降解产生的短链产物是限制PFAS彻底矿化的主要原因。未来需要更加关注短链和超短链PFAS的高效去除,以满足通过电化学技术实现PFAS完全无害化处理的需求。

关键词: 全氟化合物, 掺硼金刚石电极, 电化学氧化, 新污染物

Abstract: In this study, six boron-doped diamond (Nb/BDD) electrodes with different boron doping levels were prepared using niobium flakes as the substrate by microwave plasma chemical vapor deposition, and the effects of different boron doping levels on the electrochemical performance of the Nb/BDD electrodes and their oxidation of perfluorooctanoic acid (PFOA) were investigated and applied to the electrochemical removal of different PFASs. The results showed that with the increase of boron doping level, the grain size of the Nb/BDD film gradually decreased and the electron transfer rate on the electrode surface gradually increased, but the decrease of film quality leads to the increase of its exfoliation rate.Na2SO4 was used as the electrolyte, and the Nb/BDD electrode as the anode was able to oxidize perfluorooctanoic acid (PFOA) within 120 min at a current density of 30 mA?cm-2. PFOA degradation rate to 78.3% and mineralization rate to 78.1% within 240 min. Among the six Nb/BDD electrodes prepared with different boron doping levels, the medium and low-doped Nb/BDD electrodes have higher degradation and mineralization ability for PFOA, indicating that the efficient electrochemical removal of PFAS can be achieved by regulating the boron doping level of BDD. The analysis of the degradation products indicated that the electrochemical degradation of PFOA followed the law of carbon chain step-by-step removal, in which the direct electron transfer between the anode and the pollutant was the key initiation step of degradation. The electrochemical degradation of perfluorosulfonic acid (PFSA) and perfluorocarboxylic acid (PFCA) with different chain lengths revealed that the length of the carbon chain was inversely proportional to the degradation rate and mineralization rate of PFAS, and thus the short-chain products generated by the degradation were the main reason for limiting the complete mineralization of PFAS. In the future, more attention needs to be paid to the efficient removal of short-chain and ultrashort-chain PFAS in order to meet the demand for the complete detoxification of PFAS through electrochemical technologies.

Key words: Perfluorooctanoic compounds, Boron-doped diamond electrodes, Electrochemical oxidation, New pollution

中图分类号: 

TrendMD: