高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (9): 20230190.doi: 10.7503/cjcu20230190

• 研究论文 • 上一篇    下一篇

苯并三氮唑稠环基p-型聚合物: 通过骨架噻吩和硒吩策略精细调控吸收与带隙

田梅, 张志洋, 詹传郎()   

  1. 内蒙古师范大学化学与环境科学学院, 先进材料化学与器件内蒙古自治区高等学校重点实验室, 呼和浩特 010022
  • 收稿日期:2023-04-17 出版日期:2023-09-10 发布日期:2023-06-14
  • 通讯作者: 詹传郎 E-mail:clzhan@imnu.edu.cn
  • 基金资助:
    内蒙古科技攻关项目(2020GG0192);内蒙古自然科学基金(2022ZD04);内蒙古师范大学项目(112/1004031962)

Fused-benzotriazole Based p-Type Polymers: Fine-tuning on Absorption Band-width and Bandgap via Backbone Thiophene and Selenophene Strategies

TIAN Mei, ZHANG Zhiyang, ZHAN Chuanlang()   

  1. Key Laboratory of Advanced Materials Chemistry and Devices of the Department of Education of Inner Mongolia Autonomous Region,College of Chemistry and Environmental Science,Inner Mongolia Normal University,Hohhot 010022,China
  • Received:2023-04-17 Online:2023-09-10 Published:2023-06-14
  • Contact: ZHAN Chuanlang E-mail:clzhan@imnu.edu.cn
  • Supported by:
    the Program of the Department of Science and Technology of Inner Mongolia, China(2020GG0192);the Natural Science Foundation of Inner Mongolia, China(2022ZD04);the Program of the Inner Mongolia Normal University, China(112/1004031962)

摘要:

基于苯并三氮唑DA'D稠环单元, 设计合成了4个结构新颖的p-型聚合物(BDT-TT, BDT-Se, BDD-TT和BDD-Se), 通过骨架噻吩和硒吩策略实现了对聚合物吸收及带隙的精细调控. 首先, 将二噻吩并噻吩并吡咯稠合苯并三氮唑应用于设计聚合物, 与BDT-2F单元共聚合成了BDT-TT. 然后, 用硒吩取代二噻吩并噻吩并吡咯稠合苯并三氮唑中的两个噻吩并噻吩单元, 合成了二硒吩并吡咯稠合苯并三氮唑, 并与BDT-2F单元共聚合成了BDT-Se. 骨架硒吩取代策略的应用使聚合物的带隙从BDT-TT的2.0 eV降低到1.89 eV. 而后, 用BDD单元取代BDT-2F, 并与二噻吩并噻吩并吡咯稠合苯并三氮唑共聚, 合成了BDD-TT. 骨架噻吩取代策略的应用使聚合物的吸收半峰宽由BDT-TT的138 nm扩展到BDD-TT的229 nm, 带隙降低为1.71 eV. 最后, 将BDD与二硒吩并吡咯稠合苯并三氮唑共聚合成了BDD-Se, 通过硒吩和噻吩策略协同作用, 实现了吸收峰的展宽和带隙红移. 以PC71BM为电子受体材料, 由该系列聚合物构建的有机太阳电池器件获得了1%~2%的光电转换效率.

关键词: 苯并三氮唑, 稠环单元, 聚合物, 有机太阳电池, 带隙

Abstract:

Four fused-benzotriazole based p-type polymers(BDT-TT, BDT-Se, BDD-TT, and BDD-Se) were designed and synthesized, and the fine-tuning on absorption band-widths and bandgaps via the backbone selenophene and thiophene strategies were reported. First, we introduced dithienothiophen[3,2-b]pyrrolobenzotriazole to co-polymerize with BDT-2F and synthesized BDT-TT. Then, we used selenophene to replace the thienothiophene units on the dithienothiophen[3,2-b]pyrrolobenzotriazole and synthesized BDT-Se. Compared to BDT-TT, BDT-Se showed a reduced bandgap from 2.0 eV to 1.89 eV. After that, we used BDD to replace BDT-2F and synthesized BDD-TT by co-polymerizing with dithienothiophen[3,2-b]pyrrolobenzotriazole. In comparison to BDT-TT, BDD-TT showed extended absorption band-width with the full-width-at-the-half-maximum(FWHM) increased from 138 nm to 229 nm and reduced bandgap from 2.0 eV to 1.71 eV. At last, we combined BDD and diselenophen[3,2-b]pyrrolobenzotriazole and synthesized BDD-Se, which achieved extended absorption and further reduced bandgap(1.61 eV). Using PC71BM as the electron acceptor material, the organic solar cells fabricated by the four polymers gave the efficiencies of 1%—2%.

Key words: Benzotriazole, Fused-ring, Polymer, Organic solar cell, Bandgap

中图分类号: 

TrendMD: