高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (6): 1174-1178.doi: 10.7503/cjcu20190655
• 庆祝《高等学校化学学报》复刊40周年专栏 • 上一篇 下一篇
收稿日期:
2019-12-11
出版日期:
2020-06-10
发布日期:
2020-02-10
通讯作者:
吴思
E-mail:siwu@ustc.edu.cn
基金资助:
HUANG Yunshuai,YANG Ni,WU Zehong,WU Si*()
Received:
2019-12-11
Online:
2020-06-10
Published:
2020-02-10
Contact:
Si WU
E-mail:siwu@ustc.edu.cn
Supported by:
摘要:
综合评述了光响应钌配合物的动态配位键在调控表面功能中的应用, 介绍了以可见光或近红外光为光源的光响应钌配合物在表面图案化、 控制蛋白质表面吸附及调控表面浸润性三方面的应用, 讨论了光响应钌配合物的动态配位键在动态表面构筑中的独特优势, 对其未来应用进行了展望.
中图分类号:
黄云帅, 杨霓, 吴泽宏, 吴思. 利用光响应钌配合物的动态配位键调控表面功能[J]. 高等学校化学学报, 2020, 41(6): 1174-1178.
HUANG Yunshuai, YANG Ni, WU Zehong, WU Si. Ruthenium Complexes with Photoresponsive Coordination Bonds for Light-controlled Surface Functions [J]. Chemical Journal of Chinese Universities, 2020, 41(6): 1174-1178.
Fig.1 Schematic diagram of photon upconversion lithography(PUCL) for the patterning of proteins[45] Polyethylene glycol, which is co-grafted with Ru complexes on the upconverting nanoparticles(UCNPs), is not shown for clarity. Copyright 2015, Wiley-VCH.
Fig.2 Schematic illustration of visible-light-controlled reconfigurable multi-functional platform(A) and the mechanism of reconfiguring surfaces via ligand substitution(B)[46] Copyright 2018, Springer Nature.
Fig.3 Schematic illustration of the rewriting surface patterns on the Ru-H2O-modified substrate using visible light(A) and the fluorescence microscopy images of the Ru-H2O-modified substrate(B), Ru-MeSC2H4-FITC-modified substrate(C), patterned substrate consisting of a Ru-MeSC2H4-FITC-modified part(green) and a Ru-H2O-modified part(dark)(D) and patterned substrate consisting of a Ru-MeSC2H4-FITC-modified part(green) and a Ru-MeSC2H4-RhB modified part(red)(E)[46] Copyright 2018, Springer Nature.
Fig.4 Schematic illustrations of the conversion of a protein-resistant surface into a protein-adsorptive surface(A) and the reversible hydrophilic-to-superhydrophobic transitions based on visible-light-controlled metal-ligand coordination surface with light(B)[46] Copyright 2018, Springer Nature.
[3] | Zhao Y., Wu Y., Wang L., Zhang M., Chen X., Liu M., Fan J., Liu J., Zhou F., Wang Z., Nat. Commun., 2017, 8(1), 2218 |
[4] | Xie J. B., Li L., Knyazeva A., Weston J., Naumov P., Chem. Commun., 2016, 52(62), 9695—9698 |
[5] | Hao C., Li J., Liu Y., Zhou X., Liu Y., Liu R., Che L., Zhou W., Sun D., Li L., Xu L., Wang Z., Nat. Commun., 2015, 6(1), 7986 |
[6] | DeForest C. A., Tirrell D. A., Nat. Mater., 2015, 14(5), 523—531 |
[7] | Kwon G., Panchanathan D., Mahmoudi S. R., Gondal M. A., McKinley G. H., Varanasi K. K , Nat. Commun., 2017, 8(1), 14968 |
[8] | Liu H., Li Y., Sun K., Fan J., Zhang P., Meng J., Wang S., Jiang L., J. Am. Chem. Soc., 2013, 135(20), 7603—7609 |
[9] | Cole M. A., Voelcker N. H., Thissen H., Griesser H. J., Biomaterials, 2009, 30(9), 1827—1850 |
[10] | Kumar S., Dory Y. L., Lepage M., Zhao Y., Macromolecules, 2011, 44(18), 7385—7393 |
[11] | Dunderdale G. J., Urata C., Hozumi A., Langmuir, 2014, 30(44), 13438—13446 |
[12] | Kumar S., Tong X., Dory Y. L., Lepage M., Zhao Y., Chem. Commun., 2013, 49(1), 90—92 |
[13] | Blasco E., Wegener M., Barner-Kowollik C., Adv. Mater., 2017, 29(15), 1604005 |
[14] | Delaittre G., Goldmann A. S., Mueller J. O., Barner-Kowollik C., Angew. Chem. Int. Ed., 2015, 54(39), 11388—11403 |
[15] | Salierno M. J., Garcia-Fernandez L., Carabelos N., Kiefer K., Garcia A. J., Campo A., Biomaterials, 2016, 82, 113—123 |
[16] | Du X., Li J., Welle A., Li L., Feng W., Levkin P. A., Adv. Mater., 2015, 27(34), 4997—5001 |
[17] | Li L., Feng W. Q., Welle A., Levkin P. A., Angew. Chem. Int. Ed., 2016, 55(44), 13765—13769 |
[18] | Cui J., San Miguel V., Campo A., Macromol. Rapid Commun., 2013, 34(4), 310—329 |
[19] | Weis P., Wang D., Wu S., Macromolecules, 2016, 49(17), 6368—6373 |
[20] | Ichimura K., Oh S. K., Nakagawa M., Science, 2000, 288(5471), 1624—1626 |
[21] |
Lim H. S., Han J. T., Kwak D., Jin M., Cho K., J. Am. Chem. Soc., 2006, 128(45), 14458—14459
doi: 10.1021/ja0655901 URL |
[22] | Weber T., Chandrasekaran V., Stamer I., Thygesen M. B., Terfort A., Lindhorst T. K., Angew. Chem. Int. Ed., 2014, 53(52), 14583—14586 |
[23] | Wang S., Song Y., Jiang L., J. Photochem. Photobiol. C, 2007, 8(1), 18—29 |
[24] | Zhang L., Liang H., Jacob J., Naumov P., Nat. Commun., 2015, 6(1), 7429 |
[25] | Klajn R., Chem. Soc. Rev., 2014, 43(1), 148—184 |
[26] | Rosario R., Gust D., Hayes M., Jahnke F., Springer J., Garcia A. A., Langmuir, 2002, 18(21), 8062—8069 |
[27] | Edahiro J., Sumaru K., Tada Y., Ohi K., Takagi T., Kameda M. A., Shinbo T., Kanamori T., Yoshimi Y., Biomacromolecules, 2005, 6(2), 970—974 |
[28] |
Uchida K., Yamanoi Y., Yonezawa T., Nishihara H., J. Am. Chem. Soc., 2011, 133(24), 9239—9241
doi: 10.1021/ja203269t URL |
[29] |
Berná J., Leigh D. A., Lubomska M., Mendoza S. M., Pérez E. M., Rudolf P., Teobaldi G., Zerbetto F., Nat. Mater., 2005, 4(9), 704—710
doi: 10.1038/nmat1455 URL |
[30] |
Gandavarapu N. R., Azagarsamy M. A., Anseth K. S., Adv. Mater., 2014, 26(16), 2521—2526
doi: 10.1002/adma.201304847 URL |
[31] | Lee T. T., García J. R., Paez J. I., Singh A., Phelps E. A., Weis S., Shafiq Z., Shekaran A Campo A., García A. J., Nat. Mater., 2015, 14(3), 352—360 |
[32] | Reinhard M., Auböck G., Besley N. A., Clark I. P., Greetham G. M., Hanson-Heine M. W. D., Horvath R., Murphy T. S., Penfold T. J., Towrie M., George M. W., Chergui M., J. Am. Chem. Soc., 2017, 139(21), 7335—7347 |
[33] | Bonnet S., Limburg B., Meeldijk J. D., Klein Gebbink R. J. M., Killian J. A., J. Am. Chem. Soc., 2011, 133(2), 252—261 |
[34] | Smith N. A., Zhang P., Greenough S. E., Horbury M. D., Clarkson G. J., McFeely D., Habtemariam A., Salassa L., Stavros V. G., Dowson C. G., Sadler P. J., Chem. Sci., 2017, 8(1), 395—404 |
[35] | Bosnich B., Dwyer F. P., Aust. J. Chem., 1966, 19(12), 2229—2233 |
[36] | Sun W., Li S., Haupler B., Liu J., Jin S., Steffen W., Schubert U. S., Butt H. J., Liang X. J., Wu S., Adv. Mater., 2017, 29(6), 1603702 |
[37] | Sun W., Zeng X., Wu S., Dalton Trans., 2018, 47(2), 283—286 |
[38] | Sun W., Wen Y., Thiramanas R., Chen M., Han J., Gong N., Wagner M., Jiang S., Meijer M. S., Bonnet S., Butt H. J., Mailänder V., Liang X. J., Wu S., Adv. Funct. Mater., 2018, 28(39), 1804227 |
[39] | Sun W., Parowatkin M., Steffen W., Butt H. J., Mailander V., Wu S., Adv. Healthc. Mater., 2016, 5(4), 467—473 |
[40] | Sabrina T., Aitziber I., Christian G., Marco O., Markus L., Stefan B., Aleksandr O., Robert L., Uwe M., Ian T., Angew. Chem. Int. Ed., 2017, 56(50), 15857—15860 |
[41] | Teasdale I., Theis S., Iturmendi A., Strobel M., Hild S., Jacak J., Mayrhofer P., Monkowius U., Chem. Eur. J., 2019, 25(42), 9851—9855 |
[42] | Carling C. J., Boyer J. C., Branda N. R., J. Am. Chem. Soc., 2009, 131(31), 10838—10839 |
[43] | Yang D., Ma P., Hou Z., Cheng Z., Li C., Lin J., Chem. Soc. Rev., 2015, 44(6), 1416—1448 |
[44] | Carling C. J., Nourmohammadian F., Boyer J. C., Branda N. R., Angew. Chem. Int. Ed., 2010, 49(22), 3782—3785 |
[45] | Chen Z., He S., Butt H. J., Wu S., Adv. Mater., 2015, 27(13), 2203—2206 |
[46] | Xie C., Sun W., Lu H., Kretzschmann A., Liu J., Wagner M., Butt H. J., Deng X., Wu S., Nat. Commun., 2018, 9(1), 3842 |
[1] | Robertus J., Browne W. R., Feringa B. L., Chem. Soc. Rev., 2010, 39(1), 354—378 |
[2] | Xue L., Sanz B., Luo A., Turner K. T., Wang X., Tan D., Zhang R., Du H., Steinhart M., Mijangos C., Guttmann M., Kappl M., Campo A., ACS Nano, 2017, 11(10), 9711—9719 |
[1] | 张俊英 彭伟 陈子威 贺爱华. 聚合温度对负载型Ziegler-Natta催化剂催化丁二烯-异戊二烯共聚合的影响[J]. 高等学校化学学报, 0, (): 0-0. |
[2] | 孙孟莹,吕景春,徐红,张琳萍,钟毅,陈支泽,隋晓锋,毛志平. 磷腈-紫精聚合物的合成与电致变色性能[J]. 高等学校化学学报, 2020, 41(6): 1399-1406. |
[3] | 何男, 刘威, 杨霞, 王宪泽, 崔晓春, 吴敬慧, 耿直. 自支撑NH2-MIL-125/聚噁二唑复合正渗透膜的制备及性能[J]. 高等学校化学学报, 2020, 41(6): 1370-1377. |
[4] | 侯春喜, 李逸佳, 王婷婷, 刘盛达, 闫腾飞, 刘俊秋. 弹性肽在超分子组装中的应用[J]. 高等学校化学学报, 2020, 41(6): 1163-1173. |
[5] | 盛卉, 薛斌, 秦猛, 王炜, 曹毅. 可拉伸超韧水凝胶的制备和应用[J]. 高等学校化学学报, 2020, 41(6): 1194-1207. |
[6] | 高乃伟, 马强, 贺泳霖, 王亚培. 基于离子液体的绿色电子器件[J]. 高等学校化学学报, 2020, 41(5): 901-908. |
[7] | 陆曼,宋春梅,万波. 水性乳液/聚氨酯模型缔合增稠剂的触变性机理[J]. 高等学校化学学报, 2020, 41(5): 1108-1119. |
[8] | 李红红,耿科颖,田芙月,顾芳,王海军. 偶极Janus粒子的相态结构调控及应用[J]. 高等学校化学学报, 2020, 41(5): 1042-1047. |
[9] | 严昊, 唐萍, 李书宏, 赵天艺, 刘明杰. 仿生各向异性聚(N-异丙基丙烯酰胺)水凝胶智能响应驱动器的研究进展[J]. 高等学校化学学报, 2020, 41(5): 936-946. |
[10] | 戴利均, 孙昭艳. 聚合物纳米复合体系中聚合物结构及动力学研究进展[J]. 高等学校化学学报, 2020, 41(5): 924-935. |
[11] | 国钦瑞, 邵华锋, 贺爱华. TBIR应用于航空胎侧胶的热氧老化性能[J]. 高等学校化学学报, 2020, 41(4): 789-794. |
[12] | 白兰, 翟磊, 王畅鸥, 何民辉, 莫松, 范琳. 含酰胺结构超低膨胀聚酰亚胺薄膜的热膨胀行为[J]. 高等学校化学学报, 2020, 41(4): 795-802. |
[13] | 左晓玲, 吴翀, 黄安荣, 罗姣莲, 李竹玉, 王梦, 周颖, 余洪钠, 郭建兵. 可见光响应的荧光增白剂基多功能光引发体系[J]. 高等学校化学学报, 2020, 41(4): 811-820. |
[14] | 张继华,王超,皂伟涛,李莉,刘小艳,杨元,王昊. 利用静电界面制备高性能蒙脱石/氢化丁腈橡胶[J]. 高等学校化学学报, 2020, 41(4): 803-810. |
[15] | 罗威, 梁佑才, 胡志诚, 唐浩然, 刘孝诚, 邢晔彤, 黄飞. 新型亲水性共轭聚合物的制备及光催化制氢性能[J]. 高等学校化学学报, 2020, 41(3): 456-464. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||