高等学校化学学报 ›› 2018, Vol. 39 ›› Issue (10): 2312-2319.doi: 10.7503/cjcu20180151

• 高分子化学 • 上一篇    下一篇

反式异戊橡胶釜内合金的分级与表征

牛庆涛1, 邹陈1, 王日国2(), 李兰阁2, 贺爱华1()   

  1. 1. 山东省烯烃催化与聚合重点实验室, 橡塑材料与工程教育部重点实验室,青岛科技大学高分子科学与工程学院, 青岛 266042
    2. 山东华聚高分子材料有限公司, 滨州 256500
  • 收稿日期:2018-02-28 出版日期:2018-09-14 发布日期:2018-09-14
  • 作者简介:

    联系人简介: 贺爱华, 女, 博士, 教授, 博士生导师, 主要从事烯烃配位聚合及聚合物结构与性能研究. E-mail: aihuahe@iccas.ac.cn; ahhe@qust.edu.cn; 王日国, 男, 工程师, 主要从事合成橡胶的工程化研究. E-mail: wangriguo@sina.com

  • 基金资助:
    国家重点基础研究发展计划[批准号: 2015CB654700(2015CB654706)]、 国家自然科学基金(批准号: 51473083)、 山东省重大基础研究项目(批准号: ZR2017ZA0304)和泰山学者工程项目资助.

Fractionation and Fraction Characterization of trans-Polyisoprene Rubber Alloys within Reactor

NIU Qingtao1, ZOU Chen1, WANG Riguo2,*(), LI Lange2, HE Aihua1,*()   

  1. 1. Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics(Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
    2. Shandong Huaju Polymer Materials Co. Binzhou 256500, China
  • Received:2018-02-28 Online:2018-09-14 Published:2018-09-14
  • Contact: WANG Riguo,HE Aihua E-mail:wangriguo@sina.com;ahhe@qust.edu.cn
  • Supported by:
    † Supported by the National Basic Research Program of China[No.2015CB654700(2015CB354706)], the National Nature Science Foundation of China(No.51473083), the Significant Basic Research Program of Shandong Province, China(No.ZR2017ZA0304) and the Taishan Scholar Program, China.

摘要:

采用等温结晶分级的方法对由负载钛型Ziegler-Natta催化剂在中试装置中催化合成的具有不同丁二烯单体单元含量的反式异戊橡胶釜内合金(TPIR-05, TPIR-10)进行有效分级, 并通过 13C NMR, GPC, DSC, XRD等方法表征了主要级份的微观结构、 丁二烯单元含量($\bar{F}_{Bd}$)、 分子量(Mw)及其分布(Mw/Mn)、 热行为及晶型等. 结果表明反式异戊橡胶合金由7种级份(A-G)组成, 级份C, D, G为合金TPIR-05的主要级份, 级份A-D, G为合金TPIR-10的主要级份. A级份是具有高丁二烯含量($\bar{F}_{Bd}$=22.4%, 摩尔分数)的TPI/TPB多嵌段梯度共聚物; B和D级份是具有低丁二烯含量($\bar{F}_{Bd}$=2.7%-6.5%)的以长TPI链段为主的多嵌段共聚物; C级份为反式-1,4聚异戊二烯; G级份是一种高丁二烯单元含量($\bar{F}_{Bd}$=15.6%-20.4%)的无规共聚物并含有微弱的结晶性. 基于上述链结构分析, 提出了各级份可能的分子链结构模型.

关键词: 反式异戊橡胶合金, 等温结晶分级, 结构表征, 分子链模型

Abstract:

Trans-1,4-polyisoprene rubber alloys(TPIR) with different butadiene incorporation catalyzed by supported titanium Ziegler-Natta catalyst within pilot plant reactor were effectively fractionated by the stepwise isothermal crystallization fractionation method. The microstructure, molecular weight(Mw) and molecular weight distribution(Mw/Mn), butadiene unit content($\bar{F}_{Bd}$), crystallization behavior and crystal form of main fractions were analyzed by 13C NMR, GPC, DSC and XRD. The results showed that trans-1,4-polyisoprene rubber alloys were mainly composed of 7 fractions(A—G). TPIR-05 with low butadiene incorporation was mainly composed of fraction C, D, G; TPIR-10 with high butadiene incorporation was mainly composed of fraction A, B, C, D, G. Fraction A having high butadiene unit content($\bar{F}_{Bd}$=22.4%, molar fraction) was gradient multi-block trans-1,4-poly(isoprene-co-butadiene) copolymers containing trans-1,4-polyisoprene(TPI) blocks and trans-1,4-polybutadiene(TPB) blocks; Fractions B, D were gradient trans-1,4-poly-(isoprene-co-butadiene) copolymers with low butadiene unit content($\bar{F}_{Bd}$=2.7%—6.5%) and long TPI blocks; fractions C were trans-1,4-polyisoprene homopolymers; fraction G were random trans-1,4-poly-(isoprene-co-butadiene) copolymers with high butadiene unit content($\bar{F}_{Bd}$=15.6%—20.4%) and weak crystallizability. The possible chain structure models for these fractions were proposed.

Key words: trans-1,4-Polyisoprene rubber alloy, Isothermal crystallization fractionation, Structure characterization, Chain structure model

中图分类号: