高等学校化学学报 ›› 2015, Vol. 36 ›› Issue (6): 1213.doi: 10.7503/cjcu20150014

• 高分子化学 • 上一篇    下一篇

聚铝碳硅烷不熔化纤维中氧含量的调节

袁钦, 宋永才(), 王国栋   

  1. 国防科学技术大学新型陶瓷纤维及其复合材料重点实验室, 长沙 410073
  • 收稿日期:2015-01-07 出版日期:2015-06-10 发布日期:2015-04-08
  • 作者简介:联系人简介: 宋永才, 男, 博士, 教授, 主要从事前驱体合成及高性能陶瓷纤维研究. E-mail:songyongcai_gy@163.com
  • 基金资助:
    湖南省高校科技创新团队支持计划和国防科技大学创新群体(批准号: CJ 12-01-01)资助

Adjusting the Oxygen Content of the Cured Polyaluminocarbosilane Fibers

YUAN Qin, SONG Yongcai*(), WANG Guodong   

  1. Science and Technology on Advanced Ceramic Fibers and Composites Laboratory,National University of Defense Technology, Changsha 410073, China
  • Received:2015-01-07 Online:2015-06-10 Published:2015-04-08
  • Contact: SONG Yongcai E-mail:songyongcai_gy@163.com

摘要:

氧含量是SiAlCO纤维在1700 ℃以上烧结致密化, 并得到近化学计量比元素组成的关键因素, 而氧元素主要来源于前驱体聚铝碳硅烷(PACS)纤维的不熔化过程. 本文采用一种新的不熔化方法, 以预氧化-热交联的方式对PACS纤维进行不熔化处理, 实现了热解后所得SiAlCO纤维中氧含量在10%~13%(质量分数)范围内可调节. 为保证PACS纤维在热交联过程中不熔融, 其最低预氧化条件为190 ℃下保温4 h, 对应氧引入量为7.87%, 预氧化纤维在惰性气氛下450 ℃保温2 h, 可实现不熔化. 通过凝胶液相色谱(GPC)、 红外光谱(IR)及热重-质谱联用(TG-MS)等方法研究预氧化和热交联过程, 结果表明, 预氧化过程主要是Si—H氧化生成Si—OH, 部分Si—OH相互缩聚, 在分子间形成Si—O—Si, 使PACS数均分子量提高. 热交联分为2个阶段, 300 ℃以下主要是残留的Si—OH之间形成Si—O—Si交联结构; 300~450 ℃主要发生Si—H与Si—CH3之间脱H2的缩聚反应, 形成Si—CH2—Si交联结构.

关键词: 聚铝碳硅烷纤维, 热交联, 氧含量, SiC纤维

Abstract:

The oxygen content of the SiAlCO fibers was a key for the transformation from SiAlCO fibers to dense stoichiometric SiC fibers after sintering at >1700 ℃, which was mainly introduced during curing process. The novel preoxidation-thermal curing method was applied to the conversion of polyaluminocarbosilane(PACS) fibers and the oxygen content of the SiAlCO fibers as-pyrolyzed was adjustable in 10%—13%(mass fraction). A minimal degree of preoxidation of the PACS green fibers, which performed at 190 ℃ for 4 h leading to 7.87%(mass fraction) oxygen pick-up, is necessary for their further thermal-curing. Then, the preoxidation fibers formed crosslinking structure after thermal-curing at 450 ℃ under N2 flow. The curing process was investigated by gel permeation chromatography(GPC), infrared spectrum(IR) and thermogravi-metric analysis-mass spectra(TG-MS). The results show that the Si—OH bonds are formed after the Si—H bonds in the structure of PACS fibers reacting with oxygen molecular during preoxidation. Additionally, partial Si—OH bonds could react with each other continuously to form Si—O—Si structure, resulting in molecular increase. During the thermal-curing process, the residue of Si—OH further react with each other at lower than 300 ℃. The formation of Si—CH2—Si structure resulted from the reaction between Si—H bond and Si—CH3 bond happened in the range of 300—450 ℃.

Key words: Polyaluminocarbosilane fiber, Thermal curing, Oxygen content, SiC fiber

中图分类号: 

TrendMD: