Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (1): 20240331.doi: 10.7503/cjcu20240331
• Article • Previous Articles Next Articles
AN Yaolong, LI Zi⁃Heng, WU Fu⁃Gen()
Received:
2024-07-01
Online:
2025-01-10
Published:
2024-10-23
Contact:
WU Fu?Gen
E-mail:wufg@seu.edu.cn
Supported by:
CLC Number:
TrendMD:
AN Yaolong, LI Zi⁃Heng, WU Fu⁃Gen. A Self-assembled Nanomicelle for Realizing Tumor Photodynamic Therapy via Increasing Drug Accumulation and Prolonging Retention Time[J]. Chem. J. Chinese Universities, 2025, 46(1): 20240331.
Fig.1 TEM image and corresponding size distribution histogram of TPGS/Ppa nanomicelles(A), hydrodynamic size and PDI value of TPGS/Ppa nanomicelles measured by DLS(B), zeta potentials of TPGS and TPGS/Ppa(in PBS, pH 7.4)(C), UV⁃Vis absorption spectrum of TPGS/Ppa(in DMSO)(D), fluorescence emission spectrum(λex=608 nm) of TPGS/Ppa(in DMSO)(E), UV⁃Vis absorption spectra of Ppa(F) and TPGS/Ppa(G)(in PBS with 1% DMSO) under continuous laser irradiation(671 nm and 1 mW/cm2)
Fig.2 Relative viabilities of the 4T1 cells treated with different concentrations of TPGS, Ppa, or TPGS/Ppa for 24 h under dark(A) and laser conditions(660 nm, 2 mW/cm2, 2 min)(B); ROS levels of TPGS⁃, Ppa⁃, or TPGS/Ppa⁃treated 4T1 cells under laser condition(Ppa=0.5 μmol/L, laser: 660 nm, 2 mW/cm2, 1 min)(C); fluorescence intensities of the 4T1 cells incubated with Ppa(D) or TPGS/Ppa(E) for different periods as measured by flow cytometry; fluorescence intensity-time curves of the 4T1 cells incubated with Ppa or TPGS/Ppa for different periods(Ppa=2 μmol/L)(F); flow cytometric results of the 4T1 cells that were treated with culture medium(control), TPGS/Ppa+one endocytic inhibitor(amiloride, MβCD, genistein, or CPZ), or TPGS/Ppa under 4 ℃(G); and confocal fluorescence images of the 4T1 cells after incubation with Ppa or TPGS/Ppa(Ppa=2 μmol/L) for various periods as indicated(H)
Fig.6 Flow cytometric results of 4T1 cells after treatment with culture medium(control), Ppa, TPGS/Ppa, Ppa+laser, or TPGS/Ppa+laser(660 nm, 2 mW/cm2, 1 min)
Fig.7 Timeline of the in vivo therapeutic evaluation experiments(A), ex vivo fluorescence images of tumor tissues and major organs of the 4T1 tumor⁃bearing mice sacrificed before injection(control) and at different time points after i.v. injection with Ppa or TPGS/Ppa(Ppa=4 mg/kg)(B), experimental outline of various treatment steps for evaluating the anticancer efficiencies of different drugs in tumor⁃bearing mice(C), relative tumor volumes(D) and body weights of the tumor⁃bearing mice after different treatments(E),H&E⁃stained tissue slices of major organs(hearts, livers, spleens, lungs, and kidneys) and tumors of the mice sacrificed on the 20th day after treatment with PBS or “TPGS/Ppa+ laser”(F), TUNEL assay results of the tumor tissues collected from the mice after treatment with PBS or “TPGS/Ppa+laser”(G)(B) From top to bottom in each image: heart, liver, spleen, lung, kidneys, and tumor; (C) for phototherapy, 671 nm laser irradiation(15 mW/cm2, 15 min) was carried out at 1 d after i.v. injection of Ppa and TPGS/Ppa(Ppa=4 mg/kg); (D) statistical significance was calculated via one⁃way analysis of variance(ANOVA) with a Tukey’s post⁃hoc test. The P values of less than 0.05 were considered significant. ***P < 0.001; ns: non⁃significant difference. (D, E) The statistical data were expressed as mean±standard deviation(n=3).
1 | Agostinis P., Berg K., Cengel K. A., Foster T. H., Girotti A. W., Gollnick S. O., Hahn S. M., Hamblin M. R., Juzeniene A., Kessel D., Korbelik M., Moan J., Mroz P., Nowis D., Piette J., Wilson B. C., Golab J., CA⁃Cancer J. Clin., 2011, 61(4), 250—281 |
2 | Choi J., Sun I. C., Hwang H. S., Yoon H. Y., Kim K., Adv. Drug Delivery Rev., 2022, 186, 114344 |
3 | Bai F., Deng Y., Li L., Lv M., Razzokov J., Xu Q., Xu Z., Chen Z., Chen G., Chen Z., Exploration, 2024, DOI: 10.1002/EXP.20230177 |
4 | Overchuk M., Weersink R. A., Wilson B. C., Zheng G., ACS Nano, 2023, 17(9), 7979—8003 |
5 | Cheong T. C., Shin E. P., Kwon E. K., Choi J. H., Wang K. K., Sharma P., Choi K. H., Lim J. M., Kim H. G., Oh K., Jeon J. H., So I., Kim I. G., Choi M. S., Kim Y. K., Seong S. Y., Kim Y. R., Cho N. H., ACS Chem. Biol., 2015, 10(3), 757—765 |
6 | Hwang H. S., Shin H., Han J., Na K., J. Pharm. Invest., 2018, 48(2), 143—151 |
7 | Ozog D. M., Rkein A. M., Fabi S. G., Gold M. H., Goldman M. P., Lowe N. J., Martin G. M., Munavalli G. S., Dermatol. Surg., 2016, 42(7), 804—827 |
8 | Wachowska M., Muchowicz A., Demkow U., Cent. Eur. J. Immunol., 2015, 40(4), 481—485 |
9 | Liu Y., Meng X., Bu W., Coord. Chem. Rev., 2019, 379, 82—98 |
10 | Li W., Tan S., Xing Y., Liu Q., Li S., Chen Q., Yu M., Wang F., Hong Z., Mol. Pharmaceutics, 2018, 15(4), 1505—1514 |
11 | Xiong H., Yan J., Cai S., He Q., Wen N., Wang Y., Hu Y., Peng D., Liu Y., Liu Z., Mol. Pharmaceutics, 2020, 17(8), 2882—2890 |
12 | Tan S., Zou C., Zhang W., Yin M., Gao X., Tang Q., Drug Delivery, 2017, 24(1), 1831—1842 |
13 | Collnot E. M., Baldes C., Wempe M. F., Kappl R., Hüttermann J., Hyatt J. A., Edgar K. J., Schaefer U. F., Lehr C. M., Mol. Pharmaceutics, 2007, 4(3), 465—474 |
14 | Collnot E. M., Baldes C., Schaefer U. F., Edgar K. J., Wempe M. F., Lehr C. M., Mol. Pharmaceutics, 2010, 7(3), 642—651 |
15 | Tang J., Fu Q, Wang Y., Racette K., Wang D., Liu F., Cancer Lett., 2013, 336(1), 149—157 |
16 | Qiu L., Qiao M., Chen Q., Tian C., Long M., Wang M., Li Z., Hu W., Li G., Cheng L., Cheng L., Hu H., Zhao X., Chen D., Biomaterials, 2014, 35(37), 9877—9887 |
17 | Qiao H., Zhu Z., Fang D., Sun Y., Kang C., Di L., Zhang L., Gao Y., J. Drug Targeting, 2018, 26(1), 75—85 |
18 | Guo Y., Luo J., Tan S., Otieno B. O., Zhang Z., Eur. J. Pharm. Sci., 2013, 49(2), 175—186 |
19 | Choudhury H., Gorain B., Pandey M., Kumbhar S. A., Tekade R. K., Iyer A. K., Kesharwani P., Int. J. Pharm., 2017, 529(1/2), 506—522 |
20 | Fan Z., Wu J., Fang X., Sha X., Int. J. Pharm., 2013, 445(1/2), 141—147 |
21 | Duan Y., Cai X., Du H., Zhai G., Colloids Surf., B., 2015, 128, 322—330 |
22 | Pham C. V., Cho C. W., J. Pharm. Invest., 2017, 47(2), 111—121 |
23 | Neuzil J., Dong L. F., Ramanathapuram L., Hahn T., Chladova M., Wang X. F., Zobalova R., Prochazka L., Gold M., Freeman R., Turanek J., Akporiaye E. T., Dyason J. C., Ralph S. J., Mol. Aspects Med., 2007, 28(5/6), 607—645 |
24 | Xu P., Yin Q., Shen J., Chen L., Yu H., Zhang Z., Li Y., Int. J. Pharm., 2013, 454(1), 21—30 |
25 | Kutty R. V., Chia S. L., Setyawati M. I., Muthu M. S., Feng S. S., Leong D. T., Biomaterials, 2015, 63, 58—69 |
26 | Shen J., Sun H., Xu P., Yin Q., Zhang Z., Wang S., Yu H., Li Y., Biomaterials, 2013, 34(5), 1581—1590 |
27 | Xu P., Yu H., Zhang Z., Meng Q., Sun H., Chen X., Yin Q., Li Y., Biomaterials, 2014, 35(26), 7574—7587 |
28 | Jang B., Choi Y., Theranostics, 2012, 2(2), 190—197 |
29 | Sharma R., Iovine C., Agarwal A., Henkel R., Andrologia, 2021, 53(2), e13738 |
[1] | FU Yiying, XU Wenzhe, RONG Li, LIU Shuwei. Resveratrol Nanoparticles Combined with Dissolving Microneedles for Keloid Treatment [J]. Chem. J. Chinese Universities, 2025, 46(1): 148. |
[2] | YAO Shankun, DING Weizhong, WU Yanping, CHEN Yuncong, GUO Zijian. Research Progress in Bioimaging and Theranostics of Thioxanthene-hemicyanine Dyes [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220568. |
[3] | XU Wenzhe, ZHANG Hao. Supramolecular Interactions-mediated Nanodrug Nucleation [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220264. |
[4] | LIU Miao, LIU Ruibo, LIU Badi, QIAN Ying. Synthesis, Two-photon Fluorescence Imaging and Photodynamic Therapy of Lysosome-targeted Indole-BODIPY Photosensitizer [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220326. |
[5] | ZHAO Yuhui, LI Mingle, LONG Saran, FAN Jiangli, PENG Xiaojun. Spectroscopic Characterization of Solvation Effect for a Polarity-Sensitive BDP [J]. Chem. J. Chinese Universities, 2020, 41(9): 2018. |
[6] | WU Wenbo,LIU Bin. Two-photon Excitable Photosensitizers with Aggregation-induced Emission and Their Biomedical Applications † [J]. Chem. J. Chinese Universities, 2020, 41(2): 191. |
[7] | SHAO Wei, LEE Jiyoung, LI Fangyuan, LING Daishun. Organic Small Molecule Nanoparticles for Phototheranostics [J]. Chem. J. Chinese Universities, 2020, 41(11): 2356. |
[8] | LI Lin, XU Xinru, LI Yingqi, ZHANG Caifeng. Preparation of Targeting Nanodiamond-metaminopterone Drug System and Its Interaction with MCF-7 Cells † [J]. Chem. J. Chinese Universities, 2019, 40(9): 1998. |
[9] | YUAN Jiayi, YE Baotong, WU Jing, LI Ying, CHEN Jinghua, CHEN Jingxiao. Study on Sulfated Glycosylated Fe3O4@SiO2 Nanoparticles Inducing Tumor Cells Apoptosis† [J]. Chem. J. Chinese Universities, 2018, 39(11): 2458. |
[10] | WANG Xueli,WANG Zhenxin. Preparation of a Targeted Tumor Nanocomposites for Combined Photodynamic-photothermal Therapy Based on Partially Reduced Graphene Oxide† [J]. Chem. J. Chinese Universities, 2018, 39(10): 2185. |
[11] | JIANG Tingting, WANG Yuanfang, LIU Peilong, TIAN Yixia, LI Hao, HU Yongguo. Vancomycin Derivative Modified Silica-coated Silver Nanoplate for Surface-enhanced Raman Scattering Imaging and Antimicrobial Photodynamic Therapy of Vancomycin Resistant Bacterial Strains† [J]. Chem. J. Chinese Universities, 2017, 38(5): 846. |
[12] | ZHU Zhi-Jie, LIU Qiong, CHEN Ping, XU Xu, NI Jia-Zuan, YANG Si-Lin, SONG Yun. Seleno-polymannuronate Synthesis and Resistance to Oxidation and Apoptosis in Alzheimer’s Disease Cells [J]. Chem. J. Chinese Universities, 2013, 34(1): 115. |
[13] | MA Dong-Dong, LIN Ping-Ping, CHEN Li-Li, WANG Yu-Hua, HE Dan-Dan, CHEN Wan-Ling, ZHANG Tian-Tian, CHEN Kui-Zhi, PENG Yi-Ru. Synthesis of Poly(ethylene glycol)-poly(L-lysine) Diblock Copolymer Incorporating Tetra-(p-sulfoazophenyl-4-aminosulfonyl)phthalocyanine Chloride Aluminum(Ⅲ) Polyion Nanoparticles and Its in vitro Photodynamic Therapy Efficacy [J]. Chem. J. Chinese Universities, 2012, 33(07): 1456. |
[14] | CHEN Jin-Can1, CHEN Hong-Wei1, LI Yong-Dong1, WANG Jun-Dong2, CHEN Nai-Sheng2, HUANG Jin-Ling2, HUANG Ming-Dong1*. Synthesis and Photodynamic Activity of a New Type of Pentalysine 2-Carbonylphthalocyanine Zinc [J]. Chem. J. Chinese Universities, 2008, 29(11): 2131. |
[15] | LIU Hai-Yang1,2*; GUO Ping-Ye1; KONG Pak-Wing2; YING Xiao3; LIAO Shi-Jun1; MAK Nai-Ki4; CHANG Chi-Kwong2*. Heavy-atom Effect of Corrole Photosensitizer for Photodynamic Therapy [J]. Chem. J. Chinese Universities, 2006, 27(7): 1363. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||