Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (8): 20240137.doi: 10.7503/cjcu20240137
• Analytical Chemistry • Previous Articles Next Articles
ZHANG Ying1, ZHAO Jinfeng1, FEI Zheqi1, LIAN Lili2, LOU Dawei1(), WANG Xiyue1(
)
Received:
2024-03-25
Online:
2024-08-10
Published:
2024-05-29
Contact:
LOU Dawei, WANG Xiyue
E-mail:dwlou@hotmail. com;wangxiyue119@163. com
Supported by:
CLC Number:
TrendMD:
ZHANG Ying, ZHAO Jinfeng, FEI Zheqi, LIAN Lili, LOU Dawei, WANG Xiyue. Determination of Phthalates in Water by Covalent Organic Framework Derived Porous Carbon Solid Phase Microextraction Fiber Combined with Gas Chromatography[J]. Chem. J. Chinese Universities, 2024, 45(8): 20240137.
Components of PAEs | Linear range/(μg·L-1) | Linear equation | Correlation coefficien | LOD/(μg·L-1) | LOQ/(μg·L-1) | RSD | Enrichment factor* | ||
---|---|---|---|---|---|---|---|---|---|
Single⁃fiber(n=3, %) | Fiber⁃to⁃fiber (n=3, %) | ||||||||
intra⁃day | inter⁃day | ||||||||
DIBP | 0.5—100 | y=11.34x-5.50 | 0.9984 | 0.077 | 0.256 | 3.05 | 2.48 | 5.89 | 1848 |
DBP | 0.5—100 | y=12.22x+22.96 | 0.9977 | 0.018 | 0.061 | 3.13 | 3.90 | 4.53 | 2620 |
DPeP | 0.5—100 | y=33.40x+19.66 | 0.9998 | 0.031 | 0.105 | 2.15 | 7.02 | 5.26 | 3116 |
BBP | 0.5—100 | y=10.92x+10.24 | 0.9992 | 0.106 | 0.354 | 2.79 | 4.85 | 7.80 | 1444 |
DEHP | 0.5—100 | y=14.27x-4.23 | 0.9980 | 0.068 | 0.226 | 7.80 | 9.25 | 13.35 | 1451 |
Table 1 Performance analysis of the established SPME-GC-FID method
Components of PAEs | Linear range/(μg·L-1) | Linear equation | Correlation coefficien | LOD/(μg·L-1) | LOQ/(μg·L-1) | RSD | Enrichment factor* | ||
---|---|---|---|---|---|---|---|---|---|
Single⁃fiber(n=3, %) | Fiber⁃to⁃fiber (n=3, %) | ||||||||
intra⁃day | inter⁃day | ||||||||
DIBP | 0.5—100 | y=11.34x-5.50 | 0.9984 | 0.077 | 0.256 | 3.05 | 2.48 | 5.89 | 1848 |
DBP | 0.5—100 | y=12.22x+22.96 | 0.9977 | 0.018 | 0.061 | 3.13 | 3.90 | 4.53 | 2620 |
DPeP | 0.5—100 | y=33.40x+19.66 | 0.9998 | 0.031 | 0.105 | 2.15 | 7.02 | 5.26 | 3116 |
BBP | 0.5—100 | y=10.92x+10.24 | 0.9992 | 0.106 | 0.354 | 2.79 | 4.85 | 7.80 | 1444 |
DEHP | 0.5—100 | y=14.27x-4.23 | 0.9980 | 0.068 | 0.226 | 7.80 | 9.25 | 13.35 | 1451 |
Components of PAEs | Spiked/ (μg·L-1) | Tap water | Mineral water⁃1 | Mineral water⁃2 | |||
---|---|---|---|---|---|---|---|
Found/(μg·L-1)±SD(%) | Recovery(%)(RSD, %) | Found/(μg·L-1)±SD(%) | Recovery(%)(RSD, %) | Found/(μg·L-1)±SD(%) | Recovery(%)(RSD, %) | ||
DIBP | 0.0 | N.D.* | — | N.D. | — | N.D. | — |
5.0 | 6.0±0.1 | 119.4(2.4) | 5.5±0.1 | 109.5(1.1) | 6.2±0.1 | 123.5(2.1) | |
10.0 | 10.8±0.9 | 108.1(8.0) | 10.2±0.4 | 102.3(3.4) | 9.3±0.5 | 93.4(4.9) | |
50.0 | 50.1±3.1 | 100.1(6.1) | 52.8±3.0 | 105.6(5.7) | 46.4±1.3 | 92.8(2.7) | |
DBP | 0.0 | N.D. | — | N.D. | — | N.D. | — |
5.0 | 5.4±0.3 | 108.9(5.0) | 5.7±0.6 | 114.2(9.8) | 4.2±0.1 | 83.8(1.7) | |
10.0 | 8.4±0.4 | 84.4(4.6) | 10.3±0.7 | 102.6(7.1) | 11.4±0.9 | 114.1(7.9) | |
50.0 | 47.7±2.8 | 95.4(5.8) | 49.9±1.6 | 99.8(3.3) | 45.4±4.0 | 90.9(8.9) | |
Components of PAEs | Spiked/ (μg·L-1) | Tap water | Mineral water⁃1 | Mineral water⁃2 | |||
Found/(μg·L-1)±SD(%) | Recovery(%)(RSD, %) | Found/(μg·L-1)±SD(%) | Recovery(%)(RSD, %) | Found/(μg·L-1)±SD(%) | Recovery(%)(RSD, %) | ||
DPeP | 0.0 | N.D. | — | N.D. | — | N.D. | — |
5.0 | 5.0±0.5 | 99.8(10.9) | 4.0±0.1 | 79.5(2.6) | 5.1±0.4 | 101.8(8.3) | |
10.0 | 11.6±0.5 | 116.0(4.3) | 9.0±0.5 | 90.3(5.6) | 8.9±0.6 | 89.2(7.1) | |
50.0 | 53.5±3.8 | 106.9(7.2) | 60.2±2.1 | 120.5(3.4) | 47.8±2.9 | 95.6(6.0) | |
BBP | 0.0 | N.D. | — | N.D. | — | N.D. | — |
5.0 | 5.9±0.1 | 118.8(1.2) | 4.3±0.2 | 85.7(4.7) | 4.9±0.3 | 99.0(6.9) | |
10.0 | 10.0±0.7 | 99.9(6.9) | 9.9±1.2 | 99.1(12.2) | 9.3±0.9 | 93.0(9.5) | |
50.0 | 54.6±2.6 | 109.2(4.7) | 61.9±4.0 | 123.9(6.4) | 50.8±3.2 | 101.6(6.3) | |
DEHP | 0.0 | N.D. | — | N.D. | — | N.D. | — |
5.0 | 4.5±0.5 | 89.9(11.0) | 4.2±0.3 | 84.9(7.3) | 4.5±0.4 | 90.6(7.9) | |
10.0 | 11.4±0.6 | 114.3(5.7) | 9.6±0.3 | 96.5(3.0) | 11.7±0.5 | 117.0(4.3) | |
50.0 | 43.3±3.9 | 86.6(8.9) | 57.8±5.9 | 115.6(10.2) | 46.2±1.8 | 92.5(4.0) |
Table 2 Determination of PAEs content in actual water samples and the result of spiked recovery
Components of PAEs | Spiked/ (μg·L-1) | Tap water | Mineral water⁃1 | Mineral water⁃2 | |||
---|---|---|---|---|---|---|---|
Found/(μg·L-1)±SD(%) | Recovery(%)(RSD, %) | Found/(μg·L-1)±SD(%) | Recovery(%)(RSD, %) | Found/(μg·L-1)±SD(%) | Recovery(%)(RSD, %) | ||
DIBP | 0.0 | N.D.* | — | N.D. | — | N.D. | — |
5.0 | 6.0±0.1 | 119.4(2.4) | 5.5±0.1 | 109.5(1.1) | 6.2±0.1 | 123.5(2.1) | |
10.0 | 10.8±0.9 | 108.1(8.0) | 10.2±0.4 | 102.3(3.4) | 9.3±0.5 | 93.4(4.9) | |
50.0 | 50.1±3.1 | 100.1(6.1) | 52.8±3.0 | 105.6(5.7) | 46.4±1.3 | 92.8(2.7) | |
DBP | 0.0 | N.D. | — | N.D. | — | N.D. | — |
5.0 | 5.4±0.3 | 108.9(5.0) | 5.7±0.6 | 114.2(9.8) | 4.2±0.1 | 83.8(1.7) | |
10.0 | 8.4±0.4 | 84.4(4.6) | 10.3±0.7 | 102.6(7.1) | 11.4±0.9 | 114.1(7.9) | |
50.0 | 47.7±2.8 | 95.4(5.8) | 49.9±1.6 | 99.8(3.3) | 45.4±4.0 | 90.9(8.9) | |
Components of PAEs | Spiked/ (μg·L-1) | Tap water | Mineral water⁃1 | Mineral water⁃2 | |||
Found/(μg·L-1)±SD(%) | Recovery(%)(RSD, %) | Found/(μg·L-1)±SD(%) | Recovery(%)(RSD, %) | Found/(μg·L-1)±SD(%) | Recovery(%)(RSD, %) | ||
DPeP | 0.0 | N.D. | — | N.D. | — | N.D. | — |
5.0 | 5.0±0.5 | 99.8(10.9) | 4.0±0.1 | 79.5(2.6) | 5.1±0.4 | 101.8(8.3) | |
10.0 | 11.6±0.5 | 116.0(4.3) | 9.0±0.5 | 90.3(5.6) | 8.9±0.6 | 89.2(7.1) | |
50.0 | 53.5±3.8 | 106.9(7.2) | 60.2±2.1 | 120.5(3.4) | 47.8±2.9 | 95.6(6.0) | |
BBP | 0.0 | N.D. | — | N.D. | — | N.D. | — |
5.0 | 5.9±0.1 | 118.8(1.2) | 4.3±0.2 | 85.7(4.7) | 4.9±0.3 | 99.0(6.9) | |
10.0 | 10.0±0.7 | 99.9(6.9) | 9.9±1.2 | 99.1(12.2) | 9.3±0.9 | 93.0(9.5) | |
50.0 | 54.6±2.6 | 109.2(4.7) | 61.9±4.0 | 123.9(6.4) | 50.8±3.2 | 101.6(6.3) | |
DEHP | 0.0 | N.D. | — | N.D. | — | N.D. | — |
5.0 | 4.5±0.5 | 89.9(11.0) | 4.2±0.3 | 84.9(7.3) | 4.5±0.4 | 90.6(7.9) | |
10.0 | 11.4±0.6 | 114.3(5.7) | 9.6±0.3 | 96.5(3.0) | 11.7±0.5 | 117.0(4.3) | |
50.0 | 43.3±3.9 | 86.6(8.9) | 57.8±5.9 | 115.6(10.2) | 46.2±1.8 | 92.5(4.0) |
Detection method | Coating material | Analyte | Extraction time/min | Cycle | RSD(%) | Recovery(%) | LOD*/(μg·L-1) | Ref. | |
---|---|---|---|---|---|---|---|---|---|
HS⁃SPME⁃GC⁃FID | CDs | Water | 60 | >50 | 3.70—8.60 | 82.0—119.0 | DIBP DBP DPeP BBP DEHP | — 0.40 — 2.75 — | [ |
DI⁃SPME⁃GC⁃FID | Mg/Al⁃LDH⁃H2O2 | Water | 40 | — | 8.30—20.00 | 79.4—107.2 | DIBP DBP DPeP BBP DEHP | — 0.42 — 0.78 1.29 | [ |
DI⁃SPME⁃GC⁃FID | CuFe2O4NPs | Water | 40 | ≥80 | 3.90—12.40 | 81.1—103.7 | DIBP DBP DPeP BBP DEHP | — 0.12 — 0.23 0.40 | [ |
DI⁃SPME⁃GC⁃MS | MWCNTs⁃PPy | Water | 60 | ≥60 | 4.10—8.10 | 90.0—113.0 | DIBP DBP DPeP BBP DEHP | 0.10 0.07 0.09 0.05 — | [ |
HS⁃SPME⁃GC⁃MS | rGo/SNW⁃1@PEs | Water | 30 | — | 5.90—8.30 | 80.5—111.0 | DIBP DBP DPeP BBP DEHP | 0.01 0.01 — 0.20 — | [ |
Detection method | Coating material | Analyte | Extraction time/min | Cycle | RSD(%) | Recovery(%) | LOD*/(μg·L-1) | Ref. | |
HS⁃SPME⁃GC⁃FID | TPT⁃COF | Juice | 40 | >55 | 0.83—4.67 | 79.4—110.3 | DIBP DBP DPeP BBP DEHP | — 0.01 — — 0.01 | [ |
HS⁃SPME⁃GC⁃FID | OH50%⁃TPB⁃COF | Water | 50 | ≥60 | 0.83—4.67 | 78.6—101.9 | DIBP DBP DPeP BBP DEHP | — 0.032 — 0.034 0.093 | [ |
DI⁃SPME⁃GC⁃FID | FTPC | Water | 25 | ≥200 | 2.15—7.80 | 79.5—123.9 | DIBP DBP DPeP BBP DEHP | 0.077 0.018 0.031 0.106 0.068 | This work |
Table 3 Comparison of different methods for the determination of PAEs
Detection method | Coating material | Analyte | Extraction time/min | Cycle | RSD(%) | Recovery(%) | LOD*/(μg·L-1) | Ref. | |
---|---|---|---|---|---|---|---|---|---|
HS⁃SPME⁃GC⁃FID | CDs | Water | 60 | >50 | 3.70—8.60 | 82.0—119.0 | DIBP DBP DPeP BBP DEHP | — 0.40 — 2.75 — | [ |
DI⁃SPME⁃GC⁃FID | Mg/Al⁃LDH⁃H2O2 | Water | 40 | — | 8.30—20.00 | 79.4—107.2 | DIBP DBP DPeP BBP DEHP | — 0.42 — 0.78 1.29 | [ |
DI⁃SPME⁃GC⁃FID | CuFe2O4NPs | Water | 40 | ≥80 | 3.90—12.40 | 81.1—103.7 | DIBP DBP DPeP BBP DEHP | — 0.12 — 0.23 0.40 | [ |
DI⁃SPME⁃GC⁃MS | MWCNTs⁃PPy | Water | 60 | ≥60 | 4.10—8.10 | 90.0—113.0 | DIBP DBP DPeP BBP DEHP | 0.10 0.07 0.09 0.05 — | [ |
HS⁃SPME⁃GC⁃MS | rGo/SNW⁃1@PEs | Water | 30 | — | 5.90—8.30 | 80.5—111.0 | DIBP DBP DPeP BBP DEHP | 0.01 0.01 — 0.20 — | [ |
Detection method | Coating material | Analyte | Extraction time/min | Cycle | RSD(%) | Recovery(%) | LOD*/(μg·L-1) | Ref. | |
HS⁃SPME⁃GC⁃FID | TPT⁃COF | Juice | 40 | >55 | 0.83—4.67 | 79.4—110.3 | DIBP DBP DPeP BBP DEHP | — 0.01 — — 0.01 | [ |
HS⁃SPME⁃GC⁃FID | OH50%⁃TPB⁃COF | Water | 50 | ≥60 | 0.83—4.67 | 78.6—101.9 | DIBP DBP DPeP BBP DEHP | — 0.032 — 0.034 0.093 | [ |
DI⁃SPME⁃GC⁃FID | FTPC | Water | 25 | ≥200 | 2.15—7.80 | 79.5—123.9 | DIBP DBP DPeP BBP DEHP | 0.077 0.018 0.031 0.106 0.068 | This work |
1 | Song X., Wang C., He H., Peng M., Hu Q., Wang B., Tang L., Yu F., Environ. Res., 2023, 237, 116902 |
2 | Foong R. E., Franklin P., Sanna F., Hall G. L., Sly P. D., Thorstensen E. B., Doherty D. A., Keelan J. A., Hart R. J., Respirology, 2022, 28(3), 236—246 |
3 | Li B. P., Li Q. B., Song H., Li L. L., Chin. J. Appl. Chem., 2008, 1(25), 63—66 |
李波平, 林勤保, 宋欢, 李莉莉. 应用化学, 2008, 1(25), 63—66 | |
4 | Yin X. Y., Xu Q., Wu S. Y., Wang M., Gu Z. Z., Chem. J. Chinese Universities, 2010, 31(4), 690—695 |
殷雪琰, 许茜, 吴淑燕, 王敏, 顾忠泽. 高等学校化学学报, 2010, 31(4), 690—695 | |
5 | Brassea⁃Pérez E., Hernández⁃Camacho C. J., Labrada⁃Martagón V., Vázquez⁃Medina J. P., Gaxiola⁃Robles R., Zenteno⁃Savín T., Environ. Res., 2022, 206, 112636 |
6 | Li H., Shi Q., Chen J. F., Wang X. Y., Tang H. H., Li Q. L., Yang D. Z., Yang Y. L., Food Science, 2023, 44(4), 306—312 |
李宏, 史巧, 陈骏飞, 王馨蕊, 汤回花, 李秋兰, 杨德志, 杨亚玲. 食品科学, 2023, 44(4), 306—312 | |
7 | Li Y., Kang J. J., Zhao X. R., Xu W. K., Qi Q., Chem. J. Chinese Universities, 2019, 40(3), 448—455 |
李颖, 康君君, 赵雪茹, 徐文凯, 齐琦, 高等学校化学学报, 2019, 40(3), 448—455 | |
8 | Wang D. X., Wang X. C., Hu Q. J., Wang F. L., Li F., J. Instrum. Anal., 2022, 41(10), 1516—1522 |
王东旭, 王新财, 胡奇杰, 王凤丽, 厉芬. 分析测试学报, 2022, 41(10), 1516—1522 | |
9 | Squillante J., Scivicco M., Ariano A., Nolasco A., Esposito F., Cacciola N. A., Severino L., Cirillo T., Environ. Pollut., 2023, 316, 120664 |
10 | Hu H., Li T., Bao J., Zhang X., Sun X., Xu K., Liu Q., Guo Y., J. Chromatogr. Sci., 2022, 60(3), 207—216 |
11 | Wu D., Liu F., Tian T., Wu J. F., Zhao G. C., Microchem. J., 2021, 162, 105845 |
12 | Xiao S. Y., Song J., Zeng X. Y., Zhang J. W., Tian Y. K., Yu Z. Q., Nat. Gas Geosci., 2023, 34(11), 2036—2043 |
肖时宇, 宋谦, 曾祥英, 张佳雯, 田彦宽, 于志强. 天然气地球科学, 2023, 34(11), 2036—2043 | |
13 | Arthur C. L., Pawliszyn J., Anal. Chem., 1990, 62(19), 2145—2148 |
14 | Wang Y., Lian L., Wang X., Yue B., Ding L., Lou D., J. Chromatogr. A, 2022, 1671, 462993 |
15 | Asadollahzadeh H., Noroozian E., Maghsoudi S., Anal. Chim. Acta, 2010, 669, 32—38 |
16 | Tian Y., Feng J., Bu Y., Wang X., Luo C., Sun M., Anal. Bioanal. Chem., 2017, 409(16), 4071—4078 |
17 | Kuang Y. X., Zhou S. X., Hu Y. L., Zheng J., Ou Yang G. F., Chin. J. Chromatogr., 2022, 40(10), 882—888 |
况逸馨, 周素馨, 胡亚兰, 郑娟, 欧阳钢锋. 色谱, 2022, 40(10), 882—888 | |
18 | Huang Y. B., Pachfule P., Sun J. K., Xu Q., J. Mater. Chem. A, 2016, 4(11), 4273—4279 |
19 | Huang L., Mao N., Shuai Q., J. Environ. Chem. Eng., 2021, 9(1), 104842 |
20 | Ding S. Y., Wang W., Chem. Soc. Rev., 2013, 42(2), 548—568 |
21 | Kong X. Y., Liao L., Lu C. Z., Fang Q. Y., Chem. J. Chinese Universities, 2023, 44(12), 34—41 |
孔祥宇, 廖力, 卢灿忠, 方千荣. 高等学校化学学报, 2023, 44(12), 34—41 | |
22 | Liu J., Guo W., Tao H., Asakura Y., Shuai Q., Kim J., Huang L., Yamauchi Y., Chem. Eng. J., 2023, 471, 144544 |
23 | Yan Q., Huang L., Mao N., Shuai Q., Talanta Open, 2021, 4, 100060 |
24 | Chen K., Xiong J., Yu H., Wang L., Song Y., J. Colloid Interface Sci., 2023, 634, 176—184 |
25 | Wei S., Wang Y., Chen W., Li Z., Cheong W. C., Zhang Q., Gong Y., Gu L., Chen C., Wang D., Peng Q., Li Y., Chem. Sci., 2019, 11(3), 786—790 |
26 | Li L., Li L., Cui C., Fan H., Wang R., ChemSusChem, 2017, 10(24), 4921—4926 |
27 | Li Y., Xu X., Hou S., Ma J., Lu T., Wang J., Yao Y., Pan L., Chem. Commun.(Cambridge, U.K., 2018, 54(99), 14009—14012 |
28 | Wang W., Wang W., Zhang S., Li Z., Wang C., Wang Z., J. Chromatogr. A, 2018, 1556, 47—54 |
29 | Guo Y., He X., Huang C., Chen H., Lu Q., Zhang L., Anal. Chim. Acta, 2020, 1095, 99—108 |
30 | Wu D., Chen X., Liu F., Wu J. F., Zhao G. C., Microchem. J., 2020, 159, 105563 |
31 | Tian T., Wang F., Zhao G. C., Microchem. J., 2020, 153, 104510 |
32 | Khataei M., Yamini Y., Ghaemmaghami M., Microchim. Acta, 2020, 187(256), 1—9 |
33 | Guo H., Chen G., Ma J., Jia Q., Microchim. Acta, 2019, 186(4), 1—7 |
34 | Guo H., Song N., Wang D., Ma J., Jia Q., Talanta, 2019, 198, 277—283 |
[1] | HE Jun, ZHU Aoyang, WEI Yuchen, ZHU Yiquan, JIANG Li, HE Xiaojun. Preparation and Zinc Storage Properties of Three-dimensional Nitrogen-doped Hierarchical Porous Carbon Nanosheets [J]. Chem. J. Chinese Universities, 2024, 45(7): 20240099. |
[2] | CHEN Xin, LIU Jingyuan, YU Jing. Preparation of Porous Carbon Nanofiber Loaded Copper-platinum Alloy Catalysts and Their Electrocatalytic Hydrogen Evolution Performance [J]. Chem. J. Chinese Universities, 2024, 45(6): 20240042. |
[3] | YU Moxin, SHI Wenxu, SUN Yuhang, ZHANG Chen, WANG Xiaoting. Preparation of P-doped Coal Pitch-based Porous Carbon and Its Adsorption Performance for Broad-spectrum Antibiotics in Wastewater [J]. Chem. J. Chinese Universities, 2024, 45(4): 20230481. |
[4] | SUI Guanghui, CHENG Yanyan. Lanthanum-supported Porous Carbon Composite Electrode Material Prepared by Rice Husk Char [J]. Chem. J. Chinese Universities, 2024, 45(4): 20240012. |
[5] | ZHANG Jinkai, LI Jiali, LIU Xiaoming, MU Ying. Application of Covalent Organic Frameworks in High-performance Lithium-ion Battery Anode Materials [J]. Chem. J. Chinese Universities, 2024, 45(3): 20230523. |
[6] | TONG Dayin, ZHAO Yaolin, WANG Yuqi, HAN Zitong, WANG Jie, ZHANG Jun, YU Chenxi. Theoretical Investigation of Volatile Iodine Adsorption onto COF-103 [J]. Chem. J. Chinese Universities, 2024, 45(1): 20230401. |
[7] | WAN Pengcheng, LU Song, BAO Yu, CUI Shuxun. Single-molecule Force Spectra of Three Typical Semi-aromatic Polyesters [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230126. |
[8] | WANG Fang, HAO Jianwei. Thermal Stability and Mechanical Properties of the Composite of Epoxy Resin with Ammonium Polyphosphate/Ceramic Precursor Modified Bamboo-based Porous Carbon as Synergistic Flame Retardant [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230030. |
[9] | LIU Junhui, LI Zijia, WU Shuchang, XIE Zailai, CHEN Yiquan. Synthesis of Biochar Derived from Jujun Grass and the Application in Supercapacitors [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220653. |
[10] | KONG Xiangyu, LIAO Li, LU Canzhong, FANG Qianrong. Application of Covalent Organic Framework-Polyoxometalates Composites in Heterogeneous Catalytic Epoxidation of Olefins [J]. Chem. J. Chinese Universities, 2023, 44(12): 20230282. |
[11] | DING Yang, WANG Wanhui, BAO Ming. Recent Progress in Porous Framework-immobilized Molecular Catalysts for CO2 Hydrogenation to Formic Acid [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220309. |
[12] | HAO Honglei, MENG Fanyu, LI Ruoyu, LI Yingqiu, JIA Mingjun, ZHANG Wenxiang, YUAN Xiaoling. Biomass Derived Nitrogen Doped Porous Carbon Materials as Adsorbents for Removal of Methylene Blue in Water [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220055. |
[13] | LUO Bian, ZHOU Fen, PAN Mu. Study on Preparation and Accessibility of Hierarchical Porous Carbon Supported Platinum Catalyst [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210853. |
[14] | WANG Di, ZHONG Keli, TANG Lijun, HOU Shuhua, LYU Chunxin. Synthesis of Schiff-based Covalent Organic Framework and Its Recognition of I ‒ [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220115. |
[15] | WANG Kaixuan, LI Ziping, CHEN Xianyang, CUI Yong. Synthesis, Structure and Characterization of a Dihydrophenazine Based 3D Covalent Organic Framework [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220210. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||