Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (12): 20220676.doi: 10.7503/cjcu20220676
• Review • Previous Articles Next Articles
ZHANG Endong, LYU Fengting(), HUANG Yiming, BAI Haotian, WANG Shu
Received:
2022-10-17
Online:
2022-12-10
Published:
2022-11-28
Contact:
LYU Fengting
E-mail:lvft@iccas.ac.cn
Supported by:
CLC Number:
TrendMD:
ZHANG Endong, LYU Fengting, HUANG Yiming, BAI Haotian, WANG Shu. Diagnostic Imaging and Therapeutic Effects of Nanocatalysts by Intracellular in situ Catalytic Reactions[J]. Chem. J. Chinese Universities, 2022, 43(12): 20220676.
Fig.2 Illustration of ROS⁃induced cross⁃linking of PTT⁃SGH and catalytic hydrolysis of ester⁃caged fluorophore FN and activate the turn⁃on fluorescence inside cancer cells for selective diagnosis(A), and confocal laser scanning microscopy(CLSM) images of distinguishing A549 cells in a mixed culture incubated with FN and PTT⁃GSH(B)(scale bars: 30 μm)[31]
Fig.3 Schematic illustration of self⁃replenishing nanocatalyst Fe3O4/Ag/Bi2MoO6 in the catalytic cycle to continuously maintain sufficient intracellular oxygen for catalytic cancer therapy[39]
Fig.4 Schematic illustration of light controlled intracellular gold nanocatalyst to regulate ROS scavenging behavior by supramolecular host⁃guest interaction(A) and the changes of the ROS level in MCF⁃7 cells with the different irradiation time under the condition of exogenous, and alternately irradiated with UV and visible light(B)[56]
Fig.5 Preparation of dual nanocatalytic system with tris(bipyridine)⁃ruthenium[Ru(bpy)3] complex and β⁃galactosidase(A), schematic illustration of intracellular dual catalysis for fluorogenic reactions to restore the fluorescence of fluorescein and coumarin(B), and confocal of inactive fluorescent probes Hela cells which were treated with dual nanocatalysts(C)[68]
1 | Soldevila⁃Barreda J. J., Metzler⁃Nolte N., Chem. Rev., 2019, 119(2), 829—869 |
2 | Burke A. J., Lovelock S. L., Frese A., Crawshaw R., Ortmayer M., Dunstan M., Levy C., Green A. P., Nature, 2019, 570(7760), 219—223 |
3 | Liu Q., Wan K. W., Shang Y. X., Wang Z. G., Zhang Y. Y., Dai L. R., Wang C., Wang H., Shi X. H., Liu D. S., Ding B. Q., Nat. Mater., 2021, 20(3), 395—402 |
4 | Hernández⁃Ortega A., Quesne M. G., Bui S., Heyes D. J., Steiner R. A., Scrutton N. S., de Visser S. P., J. Am. Chem. Soc., 2015, 137(23), 7474—7487 |
5 | Lee Y., Luther D. C., Goswami R., Jeon T., Clark V., Elia J., Gopalakrishnan S., Rotello V. M., J. Am. Chem. Soc., 2020, 142(9), 4349—4355 |
6 | Hernandez K., Fernandez⁃Lafuente R., Enzyme Microb. Technol., 2011, 48(2), 107—122 |
7 | Domanski T. L., Halpert. J. R., Curr. Drug Metab., 2001, 2(2), 117—137 |
8 | Cedrone F., Ménez A., Quéméneur E., Curr. Opin. Struct. Biol., 2000, 10(4), 405—410 |
9 | Cheng F., Zhu L. L., Schwaneberg U., Chem. Commun., 2015, 51(48), 9760—9772 |
10 | Noble C., Olejarz J., Esvelt K. M., Church G. M., Nowak M. A., Sci. Adv., 2017, 3(4), e1601964 |
11 | Lee H., Kim J., Nat. Biotechnol., 2017, 36(8) 703—704 |
12 | Lu H., Huang Y. M., Lv F. T., Liu L. B., Ma Y. G., Wang S., CCS Chem., 2021, 3(7), 1296–1305 |
13 | Duan B., Zhou C., Zhu C. Y., Yu Y. F., Li G. Y., Zhang S. H., Zhang C., Ye X. Y., Ma H. H., Qu S., Zhang Z. Y., Wang P., Sun S. Y., Liu Q., Nat. Commun., 2019, 10, 2233 |
14 | Dai N., Zhao H., Yu W., Lv F. T., Liu L. B., Wang S., Sci. China Chem., 2021, 64(1), 143—150 |
15 | Wen Y. J., Yan L. Y., Ling Y. C., Sci. China Chem., 2018, 61(3), 266—275 |
16 | Hou Z. G., Zhang Y., Science, 2019, 365(6448), 25—26 |
17 | Sun H. C., Luo Q., Hou C. X., Liu J. Q., Nano Today, 2017, 14, 16—41 |
18 | Dai C. H., Liu B., Energ. Environ. Sci., 2020, 13(1), 24—52 |
19 | Guo S. W., Huang Q. X., Wei J. W., Wang S. P., Wang Y. T., Wang L. Y., Wang R. B., Nano Today, 2022, 43, 101396 |
20 | Qi R. L., Zhao H., Zhou X., Liu J., Dai N., Zeng Y., Zhang E. D., Lv F. T., Huang Y. M., Liu L. B., Wang Y. L., Wang S., Angew. Chem. Int. Ed., 2021, 60(11), 5759—5765 |
21 | Li Z. L., Lu W., Jia S. C., Yuan H. X., Gao L. H., ACS Appl. Bio Mater., 2021, 4(1), 370—386 |
22 | Hernández⁃Ortega A., Quesne M. G., Bui S., Heyes D. J., Steiner R. A., Scrutton N. S., de Visser S. P., J. Am. Chem. Soc., 2015, 137(23), 7474—7487 |
23 | Wongkaew N., Simsek M., Griesche C., Baeumner A. J., Chem. Rev., 2019, 119(1), 120—194 |
24 | Liang M. M., Yan X. Y., Acc. Chem. Res., 2019, 52(8), 2190—2200 |
25 | Wang X. Q., Xiong T. D., Cui M., Guan X. L., Yuan J. C., Wang Z. C., Li R. F., Zhang H. R., Duan S. F., Wei F., Appl. Mater. Today, 2020, 21, 100827 |
26 | Li L., Xu S. J., Yan H., Li X. W., Yazd H. S., Li X., Huang T., Cui C., Jiang J. H., Tan W. H., Angew. Chem. Int. Ed., 2021, 60(5), 2221—2231 |
27 | Gujrati V., Prakash J., Malekzadeh-Najafabadi J., Stiel A., Klemm U., Mettenleiter G., Aichler M., Walch A., Ntziachristos V., Nat. Commun., 2019, 10, 1114 |
28 | Geng H., Gao D., Wang Z. J., Liu X. N., Cao Z. S., Xing C. F., Chin. J. Chem., 2021, 40 (4), 524—538 |
29 | Luo Y., Zhao J. Q., Zhang X. R., Wang C. C., Wang T. Y., Jiang M, Zhu Q., Xie T., Chen D. J., Colloids Surf. B, 2021, 201, 111638 |
30 | Fan K. L., Cao C. Q., Pan Y. X., Lu D., Yang D. L., Feng J., Song L. N., Liang M. M., Yan X. Y., Nat. Nanotech., 2012, 7(7), 459—464 |
31 | Di Y. F., Zhang E. D., Yang Z. W., Shen Q., Fu X. C., Song G., Zhu C. W., Bai H. T., Huang Y. M., Lv F. T., Liu L. B., Wang S., Angew. Chem. Int. Ed., 2022, 61(14), e202116457 |
32 | Ding H., Cai Y. J., Gao L. Z., Liang M. M., Miao B. P., Wu H. W., Liu Y., Xie N., Tang A. F., Fan K. L., Yan X. Y., Nie G. H., Nano Lett., 2019, 19(1), 203—209 |
33 | Fu X. C., Huang Y. M., Zhao H., Zhang E. D., Shen Q., Di Y. F., Lv F. T., Liu L. B., Wang S., Adv. Mater., 2021, 33(34), 2102570 |
34 | Chen F., Wendl M. C., Wyczalkowski M. A., Bailey M. H., Li Y. Z., Li D., Nat. Cancer, 2021, 2(9), 879—890 |
35 | Fu X. C., Bai H. T., Lyu F. T., Liu L. B., Wang S., Chem. Res. Chinese Universities, 2020, 36(2), 237—242 |
36 | Li S. S., Shang L., Xu B. L., Wang S. H., Gu K., Wu Q. Y., Sun Y., Zhang Q. H., Yang H. L., Zhang F. R., Gu L., Zhang T. R., Liu H. Y., Angew. Chem. Int. Ed., 2019, 58(36), 12624—12631 |
37 | Wang D. D., Wu H. H., Wang C. L., Gu L., Chen H. Z., Jana D., Feng L. L., Liu J. W., Wang X. Y., Xu P. P., Guo Z., Chen Q. W., Zhao Y. L., Angew. Chem. Int. Ed., 2021, 60(6), 3001—3007 |
38 | Fang C., Deng Z., Cao G. D., Chu Q., Wu Y. L., Li X., Peng X. S., Han G. R., Adv. Funct. Mater., 2020, 30(16), 1910085 |
39 | Cao C. Y., Zou H., Yang N., Li H., Cai Y., Song X. J., Shao J. J., Chen P., Mou X. Z., Wang W. J., Dong X. C., Adv. Mater., 2021, 33(52), 2106996 |
40 | Zhou Z., Wang Y. L., Peng F., Meng F. Q., Zha J. J., Ma L., Du Y. H., Peng N., Ma L. F., Zhang Q. H., Gu L., Yin W. Y., Gu Z. J., Tan C. L., Angew. Chem. Int. Ed., 2022, 61(16), e202115939 |
41 | Mei L. Q., Ma D. Q., Gao Q., Zhang X., Fu W. H., Dong X. H., Xing G. M., Yin W. Y., Gu Z. J., Zhao Y. L., Mater. Horiz., 2020, 7(7), 1834—1844 |
42 | Fu W. H., Zhang X., Mei L. Q., Zhou R. Y., Yin W. Y., Wang Q., Gu Z. J., Zhao Y. L., ACS Nano, 2020, 14(8), 10001—10017 |
43 | Fan K. L., Xi J. Q., Fan L., Wang P. X., Zhu C. H., Tang Y., Xu X. D., Liang M. M., Jiang B., Yan X. Y., Gao L. Z., Nat. Commun., 2018, 9, 1440 |
44 | Zhao H., Guo Y. D., Yuan A., Xia S. P., Gao Z. Q., Huang Y. M., Lv F. T., Liu L. B., Wang S., Sci. China Mater., 2022, 65(7), 1971—1979 |
45 | Yi X., Chen L., Zhong X. Y., Gao R. L., Qian Y. T., Wu F., Song G. S., Chai Z. F., Liu Z., Yang K., Nano Res., 2016, 9(11), 3267—3278 |
46 | Zhu W. W., Dong Z. L., Fu T. T., Liu J. J., Chen Q., Li Y. G., Zhu R., Xu L. G., Liu Z., Adv. Funct. Mater., 2016, 26(30), 5490—5498 |
47 | Wang D. D., Wu H. H., Phua S. Z. F., Yang G. B., Lim W. Q., Gu L., Qian C., Wang H. B., Guo Z., Chen H. Z., Zhao Y. L., Nat. Commun., 2020, 11(1), 357 |
48 | Gu Y., Sun W., Xu Z. H., Wang J., Hu X., Lu Z. Z., Zhang X. W., Cell J., 2021, 23(4), 435—444 |
49 | Pickering R. J., Antioxidants, 2021, 10(2), 171 |
50 | Forman H.J., Zhang H. Q., Nat. Rev. Drug. Discov., 2021, 20(9), 689—709 |
51 | Butterfield D. A., Halliwell B., Nat. Rev. Neurosci., 2019, 20(3), 148—160 |
52 | Huang Y. Y., Liu Z., Liu C. Q., Ju E. G., Zhang Y., Ren J. S., Qu X. G., Angew. Chem. Int. Ed., 2016, 55(23), 6646—6650 |
53 | Zhang X. Y., Zhang S. T., Yang Z. X., Wang Z. H., Tian X., Zhou R. H., Nanoscale, 2021, 13(29), 12613—12622 |
54 | Moglianetti M., Pedone D., Udayan G., Retta S. F., Debellis D., Marotta R., Turco A., Rella S., Malitesta C., Bonacucina G., Luca E., Pompa P. P., Nanomaterials, 2020, 10(1), 99 |
55 | He W. W., Zhou Y. T., Wamer W. G., Hu X. N., Wu X. C., Zheng Z., Boudreau M. D., Yin J. J., Biomaterials, 2013, 34(3), 765—773 |
56 | Wang F. M., Ju E. G., Guan Y. J., Ren J. S., Qu X. G., Small, 2017, 13(25), 1603051 |
57 | Shen S., Huang Y. M., Yuan A. R., Lv F. T., Liu L. B., Wang S., CCS Chem., 2021, 3(11), 129—135 |
58 | Yue L. D., Yang K. K., Wei J. W., Xu M. Z., Sun C., Ding Y. F., Yuan Z., Wang S., Wang R. B., CCS Chem., 2021, 4(5), 1860—1872 |
59 | Zhu X. H., Lu M., Lee B. Y., Ugurbil K., Chen W., Proc. Natl. Acad. Sci. U. S. A., 2015, 112(9), 2876—2881 |
60 | Dai N., Zhao H., Qi R. L., Chen Y. Y., Lv F. T., Liu L. B., Wang S., Chem. Eur. J., 2020, 26(20), 4489—4495 |
61 | Yin J. J., Lao F., Fu P. P., Wamer W. G., Zhao Y. L., Wang P. C., Qiu Y., Sun B. Y., Xing G. M., Dong J. Q., Liang X. J., Chen C. Y., Biomaterials, 2009, 30(4), 611—621 |
62 | Ma W. J., Xue Y. F., Guo S. Y., Jiang Y. N., Wu F., Yu P., Mao L. Q., Chem. Commun., 2020, 56(38), 5115—5118 |
63 | Xie J. N., Wang N., Dong X. H., Wang C. Y., Du Z., Mei L. Q., Yong Y, Huang C. S., Li Y. L., Gu Z. J., Zhao Y. L., ACS Appl. Mater. Interfaces, 2019, 11(3), 2579—2590 |
64 | Liu Y. F., Cheng Y., Zhang H., Zhou M., Yu Y. J., Lin S. C., Jiang B., Zhao X. Z., Miao L. Y., Wei C. W., Liu Q. Y., Lin Y. W., Du Y., Butch C. J., Wei H., Sci. Adv., 2020, 6(29), eabb2695 |
65 | Wang W. J., Zhang X. Z., Huang R., Hirschbiegel C. M., Wang H. S., Ding Y., Rotello V. M., Adv. Drug Deliv. Rev., 2021, 176, 113893 |
66 | Li D., Liu B. W., Huang P. J. J., Zhang Z. J., Liu J. W., Chem. Commun., 2018, 54(88), 12519—12522 |
67 | Bai Y. G., Feng X. X., Xing H., Xu Y. H., Kim B. K., Baig N., Zhou T. H., Gewirth A. A., Lu Y., Oldfield E., Zimmerman S. C., J. Am. Chem. Soc., 2016, 138(35), 11077—11080 |
68 | Chen J. F., Li K., Shon J. S., Zimmerman S. C., J. Am. Chem. Soc., 2020, 142(10), 4565—4569 |
[1] | WANG Xueli, SONG Xiangwei, XIE Yanning, DU Niyang, WANG Zhenxin. Preparation, Characterization of Partially Reduced Graphene Oxide and Its Killing Effect on Human Cervical Cancer Cells [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210595. |
[2] | DONG Mingjie, WANG Xuan, DONG Haifeng, ZHANG Xueji. Applications of Metal-organic Frameworks in Cancer Theranostics [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220575. |
[3] | TANG Yujing, HU Min, WANG Xia, WANG Qigang. Advances in Enzyme-load Nanocatalytic Systems for Disease Detection and Treatment [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220640. |
[4] | WANG Shiqi, LUO Bowen, YU Jicheng, GU Zhen. Near-infrared-Ⅱ Fluorescence Imaging for Tumor Diagnosis and Therapy [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220577. |
[5] | ZHAO Ying, QIAO Ling, ZHAO Guofeng, CHEN Li. Synthesis and Biological Activity of Lycorine Derivatives Containing Malate Ester [J]. Chem. J. Chinese Universities, 2021, 42(9): 2789. |
[6] | WEI Minmin, YUAN Ze, LU Min, MA Hui, XIE Xiaoji, HUANG Ling. Recent Advances in Lanthanide Doped Upconversion Nanoparticle-Metal Organic Framework Composites [J]. Chem. J. Chinese Universities, 2021, 42(8): 2313. |
[7] | LIU Hanlin, YIN Linlin, CHEN Xifeng, LI Guodong. Recent Advances in Indium Oxide Based Nanocatalysts for Selective Hydrogenation of CO2 [J]. Chem. J. Chinese Universities, 2021, 42(5): 1430. |
[8] | GE Haoying, DU Jianjun, LONG Saran, SUN Wen, FAN Jiangli, PENG Xiaojun. Surface Functionalized Gold Nanomaterials in Tumor Diagnosis and Treatment [J]. Chem. J. Chinese Universities, 2021, 42(4): 1202. |
[9] | CHEN Hongda, ZHANG Hua, WANG Zhenxin. Development of Small Animals in vivo Fluorescence-photothermal Dual Mode Imaging System [J]. Chem. J. Chinese Universities, 2021, 42(3): 725. |
[10] | DUAN Jun, ZHOU Pingping, ZHANG Liqian, MA Lin, YU Wen, ZHU Meiqi, ZHUANG Minyan, YANG Fenglei, CAO Changsheng, ZHANG Peng, SHI Yanhui. Syntheses of Imidazole-coordinated Ru(II) Half-sandwich Macrocyclic Complexes and Their Anti-cancer Activity [J]. Chem. J. Chinese Universities, 2021, 42(12): 3589. |
[11] | ZHAO Zhuo, WANG Xueqiang. Investigations upon the Bioconjugation-based Construction Technologies and Applications of Aptamer-drug Conjugates [J]. Chem. J. Chinese Universities, 2021, 42(11): 3367. |
[12] | XI Jing, CHEN Na, YANG Yanbing, YUAN Quan. Recent Progress in Controlled Synthesis of Persistent Luminescence Nanomaterials for Diagnosis Applications [J]. Chem. J. Chinese Universities, 2021, 42(11): 3247. |
[13] | WANG Qing, HE Yuqiu, WANG Fuan. Advances of Multifunctional Deoxyribozyme in Biomedical Analysis [J]. Chem. J. Chinese Universities, 2021, 42(11): 3334. |
[14] | KE Mengting, YUAN Jiangpei, ZHANG Heng, FANG Yu. Coordination Porous Polymers for Targeting Subcellular Organelles: Bio-imaging, Diagnosis and Therapy [J]. Chem. J. Chinese Universities, 2021, 42(11): 3295. |
[15] | PENG Haiyue, WANG Ting, LI Guorui, HUANG Jing. Synthesis of Melanin and Its Function Regulation by Small Molecules [J]. Chem. J. Chinese Universities, 2021, 42(11): 3357. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||