Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (9): 20220347.doi: 10.7503/cjcu20220347
• Perspectives • Previous Articles Next Articles
WANG Xintian2, LI Pan2, CAO Yue1, HONG Wenhao2, GENG Zhongxuan2, AN Zhiyang2, WANG Haoyu2, WANG Hua3, SUN Bin1(), ZHU Wenlei2(), ZHOU Yang1()
Received:
2022-05-16
Online:
2022-09-10
Published:
2022-07-28
Contact:
SUN Bin,ZHU Wenlei,ZHOU Yang
E-mail:iambsun@njupt.edu.cn;wenleizhu@nju.edu.cn;iamyangzhou@njupt.edu.cn
Supported by:
CLC Number:
TrendMD:
WANG Xintian, LI Pan, CAO Yue, HONG Wenhao, GENG Zhongxuan, AN Zhiyang, WANG Haoyu, WANG Hua, SUN Bin, ZHU Wenlei, ZHOU Yang. Techno-economic Analysis and Industrial Application Prospects of Single-atom Materials in CO2 Catalysis[J]. Chem. J. Chinese Universities, 2022, 43(9): 20220347.
Catalyst | Current density/(mA·cm-2) | Faradaic efficiency(%) | Stability/h | Product | Ref. |
---|---|---|---|---|---|
CoSA/HCNFs | 211 | 92 | 50 | CO | [ |
Ni?N2 | 98 | 20 | 10 | CO | [ |
Ni?N x | 100 | 100 | 20 | CO | [ |
Fe?N4 | 94.9 | 2 | 60 | CO | [ |
Single?atom Sn δ+ on N?doped graphene | 11.7 | 74.3 | 24 | CH3COO- | [ |
Cu?CDs | 40 | 78 | 6 | CH4 | [ |
SA?Zn/MNC | 31.8 | 85 | 35 | CH4 | [ |
CoPc?NH2/CNT | 31.9 | 32 | 12 | CH3OH | [ |
Cu/C?0.4 | — | 91 | 16 | CH3CH2OH | [ |
Cu?pyrrolic?N4 | ca. 0.4 | 36.7 | 5 cycle | CH3COCH3 | [ |
Table 1 Electrocatalytic performance of recently reported single-atom catalysts for CO2 reduction reaction
Catalyst | Current density/(mA·cm-2) | Faradaic efficiency(%) | Stability/h | Product | Ref. |
---|---|---|---|---|---|
CoSA/HCNFs | 211 | 92 | 50 | CO | [ |
Ni?N2 | 98 | 20 | 10 | CO | [ |
Ni?N x | 100 | 100 | 20 | CO | [ |
Fe?N4 | 94.9 | 2 | 60 | CO | [ |
Single?atom Sn δ+ on N?doped graphene | 11.7 | 74.3 | 24 | CH3COO- | [ |
Cu?CDs | 40 | 78 | 6 | CH4 | [ |
SA?Zn/MNC | 31.8 | 85 | 35 | CH4 | [ |
CoPc?NH2/CNT | 31.9 | 32 | 12 | CH3OH | [ |
Cu/C?0.4 | — | 91 | 16 | CH3CH2OH | [ |
Cu?pyrrolic?N4 | ca. 0.4 | 36.7 | 5 cycle | CH3COCH3 | [ |
6 | Zhang T., Acta Phys. Chim. Sin., 2016, 32(7), 1551—1552 |
7 | Qiao B. T., Wang A. Q., Yang X. F., Allard L. F., Jiang Z., Cui Y. T., Liu J. Y., Li J., Zhang T., Nat. Chem., 2011, 3(8), 634—641 |
8 | Taylor H. S., Armstrong E. F., Proc. R. Soc. Lond. A, 1925, 108(745), 105—111 |
9 | Rooney J. J., Webb G., J. Catal., 1964, 3(6), 488—501 |
10 | Asakura K., Nagahiro H., Ichikuni N., Iwasawa Y., Appl. Catal. A, 1999, 188(1/2), 313—324 |
11 | Fu Q., Saltsburg H., Flytzani⁃Stephanopoulos M., Science, 2003, 301(5635), 935—938 |
12 | Zhang X., Shi H., Xu B. Q., Angew. Chem. Int. Ed., 2005, 44(43), 7132—7135 |
13 | Hackett S. E. J., Brydson R. M., Gass M. H., Harvey I., Newman A. D., Wilson K., Lee A. F., Angew. Chem. Int. Ed., 2007, 46(45), 8593—8596 |
14 | Huang Z. W., Synthesis, Structure and Catalytic Performance of Single⁃atom Silver Catalysts in the Complete Oxidation of Formaldehyde, Fudan University, Shanghai, 2014 |
黄志伟. 单原子银催化剂的合成、 结构和甲醛的氧化性能, 上海: 复旦大学, 2014 | |
15 | Zhang N., Li L., Huang X., Zhang G., He H., J. Chin. Soc. of Rare Earths, 2018, 36(5), 513—532 |
16 | Song G. Q., Wang Z. Q., Wang L., Li G. R., Huang M. J., Yin F. X., Chin. J. Catal., 2014, 35(2), 185—195 |
17 | Nie L., Mei D., Xiong H., Peng B., Ren Z., Hernandez X. I. P., DeLariva A., Wang M., Engelhard M. H., Kovarik L., Datye A. K., Wang Y., Science, 2017, 358(6369), 1419—1423 |
18 | Lang R., Xi W., Liu J. C., Cui Y. T., Li T., Lee A. F., Chen F., Chen Y., Li L., Li L., Lin J., Miao S., Liu X., Wang A. Q., Wang X., Luo J., Qiao B., Li J., Zhang T., Nat. Commun., 2019, 10(1), 234 |
19 | Gu J., Jian M., Huang L., Sun Z., Li A., Pan Y., Yang J., Wen W., Zhou W., Lin Y., Wang H. J., Liu X., Wang L., Shi X., Huang X., Cao L., Chen S., Zheng X., Pan H., Zhu J., Wei S. Q., Li W. X., Lu J., Nat. Nanotechnol., 2021, 16(10), 1141—1149 |
20 | Zhang H., Lu X. F., Wu Z.-P., Lou X. W. D., ACS Cent. Sci., 2020, 6(8), 1288—1301 |
21 | Cai Y., Fu J., Zhou Y., Chang Y. C., Min Q., Zhu J. J., Lin Y., Zhu W., Nat. Commun., 2021, 12(1), 586 |
22 | Liu J., Cai Y., Song R., Ding S., Lyu Z., Chang Y. C., Tian H., Zhang X., Du D., Zhu W., Zhou Y., Lin Y., Mater. Today, 2021, 48, 95—114 |
23 | Ji S., Chen Y., Wang X., Zhang Z., Wang D., Li Y., Chem. Rev., 2020, 120(21), 11900—11955 |
24 | Wang D. S., Zhuang J. H., Chem. J. Chinese Universities, 2022, 43(5), 20220043 |
王定胜, 庄嘉豪. 高等学校化学学报, 2022, 43(5), 20220043 | |
25 | Flytzani⁃Stephanopoulos M., Gates B. C., Annu. Rev. Chem. Biomol. Eng., 2012, 3, 545—574 |
26 | Shi Y., Zhao C., Wei H., Guo J., Liang S., Wang A., Zhang T., Liu J., Ma T., Adv. Mater., 2014, 26(48), 8147—8153 |
27 | Liu J., ACS Catal., 2017, 7(1), 34-59 |
28 | Zhang W., Zheng W., Adv. Funct. Mater., 2016, 26(18), 2988—2993 |
29 | Li X., Rong H., Zhang J., Wang D., Li Y., Nano Res., 2020, 13(7), 1842—1855 |
30 | Zhu C., Fu S., Shi Q., Du D., Lin Y., Angew. Chem. Int. Ed., 2017, 56(45), 13944—13960 |
31 | Mitchell S., Vorobyeva E., Pérez⁃Ramírez J., Angew. Chem. Int. Ed., 2018, 57(47), 1531615329 |
32 | Peng Y., Lu B., Chen S., Adv. Mater., 2018, 30(48), 1801995 |
33 | Wang A., Li J., Zhang T., Nat. Rev. Chem., 2018, 2(6), 65—81 |
34 | Gong L., Zhang D., Lin C. Y., Zhu Y., Shen Y., Zhang J., Han X., Zhang L., Xia Z., Adv. Energy Mater., 2019, 9(44), 1902625 |
35 | Ding S., Lyu Z., Fang L., Li T., Zhu W., Li S., Li X., Li J. C., Du D., Lin Y., Small, 2021, 17(25), 2100664 |
36 | Li J. C., Meng Y., Zhang L., Li G., Shi Z., Hou P. X., Liu C., Cheng H. M., Shao M., Adv. Funct. Mater., 2021, 31(42), 2103360 |
37 | Wang Y., Zheng X., Wang D., Nano Res., 2022, 15(3), 1730—1752 |
38 | Guo X., Fang G., Li G., Ma H., Fan H., Yu L., Ma C., Wu X., Deng D., Wei M., Tan D., Si R., Zhang S., Li J., Sun L., Tang Z., Pan X., Bao X., Science, 2014, 344(6184), 616—619 |
39 | Serna P., Gates B. C., Acc. Chem. Res., 2014, 47(8), 2612—2620 |
40 | Yang S., Kim J., Tak Y. J., Soon A., Lee H., Angew. Chem. Int. Ed., 2016, 55(6), 2058—2062 |
41 | Yang D., Gates B. C., Nat. Mater., 2017, 16(7), 703—704 |
42 | Li Z., Wang D., Wu Y., Li Y., Natl. Sci. Rev., 2018, 5(5), 673—689 |
43 | Wang J., Li Z., Wu Y., Li Y., Adv. Mater., 2018, 30(48), 1801649 |
44 | Wang Y., Hu F. L., Mi Y., Yan C., Zhao S., Chem. Eng. J., 2021, 406, 127135 |
45 | Liu P., Chen J., Zheng N., Chin. J. Catal., 2017, 38(9), 1574—1580 |
46 | Yin P., Yao T., Wu Y., Zheng L., Lin Y., Liu W., Ju H., Zhu J., Hong X., Deng Z., Zhou G., Wei S., Li Y., Angew. Chem. Int. Ed., 2016, 55(36), 10800—10805 |
47 | Wu Y., Wang D., Li Y., Sci. China Mater., 2016, 59(11), 938—996 |
48 | Ju W., Bagger A., Hao G. P., Sofia Varela A., Sinev I., Bon V., Roldan Cuenya B., Kaskel S., Rossmeisl J., Strasser P., Nat. Commun., 2017, 8(1), 944 |
49 | Jones J., Xiong H., DeLaRiva A. T., Peterson E. J., Hien P., Challa S. R., Qi G., Oh S., Wiebenga M. H., Hernandez X. I. P., Wang Y., Datye A. K., Science, 2016, 353(6295), 150—154 |
50 | Zhang Z., Feng C., Liu C., Zuo M., Qin L., Yan X., Xing Y., Li H., Si R., Zhou S., Zeng J., Nat. Commun., 2020, 11(1), 1215 |
51 | Han A., Wang B., Kumar A., Qin Y., Jin J., Wang X., Yang C., Dong B., Jia Y., Liu J., Sun X., Small Methods, 2019, 3(9), 1800471 |
52 | Chen Y., Ji S., Chen C., Peng Q., Wang D., Li Y., Joule, 2018, 2(7), 1242—1264 |
53 | Zhao C., Dai X., Yao T., Chen W., Wang X., Wang J., Yang J., Wei S., Wu Y., Li Y., J. Am. Chem. Soc., 2017, 139(24), 8078—8081 |
54 | Huan T. N., Ranjbar N., Rousse G., Sougrati M., Zitolo A., Mougel V., Jaouen F., Fontecave M., ACS Catal., 2017, 7(3), 1520—1525 |
55 | Gu J., Hsu C. S., Bai L., Chen H. M., Hu X., Science, 2019, 364(6445), 1091—1094 |
56 | Pan F., Zhang H., Liu K., Cullen D., More K., Wang M., Feng Z., Wang G., Wu G., Li Y., ACS Catal., 2018, 8(4), 3116—3122 |
57 | Liu C., Wu Y., Sun K., Fang J., Huang A., Pan Y., Cheong W. C., Zhuang Z., Zhuang Z., Yuan Q., Xin H. L., Zhang C., Zhang J., Xiao H., Chen C., Li Y., Chem, 2021, 7(5), 1297—1307 |
58 | Wang C., Ren H., Wang Z., Guan Q., Liu Y., Li W., Appl. Catal. B, 2022, 304, 120958 |
59 | Wang C., Liu Y., Ren H., Guan Q., Chou S., Li W., ACS Catal., 2022, 12(4), 2513—2521 |
60 | Lin L., Li H., Wang Y., Li H., Wei P., Nan B., Si R., Wang G., Bao X., Angew. Chem. Int. Ed., 2021, 60(51), 26582—26586 |
61 | Li X., Bi W., Chen M., Sun Y., Ju H., Yan W., Zhu J., Wu X., Chu W., Wu C., Xie Y., J. Am. Chem. Soc., 2017, 139(42), 14889—14892 |
62 | Li Y., Zhang S. L., Cheng W., Chen Y., Luan D., Gao S., Lou X. W., Adv. Mater., 2022, 34(1), 2105204 |
63 | Liu S., Yang H. B., Hung S. F., Ding J., Cai W., Liu L., Gao J., Li X., Ren X., Kuang Z., Huang Y., Zhang T., Liu B., Angew. Chem. Int. Ed., 2020, 59(2), 798—803 |
64 | Yang H. B., Hung S. F., Liu S., Yuan K., Miao S., Zhang L., Huang X., Wang H. Y., Cai W., Chen R., Gao J., Yang X., Chen W., Huang Y., Chen H. M., Li C. M., Zhang T., Liu B., Nat. Energy, 2018, 3(2), 140—147 |
65 | Li S., Zhao S., Lu X., Ceccato M., Hu X. M., Roldan A., Catalano J., Liu M., Skrydstrup T., Daasbjerg K., Angew. Chem. Int. Ed., 2021, 60(42), 22826—22832 |
66 | Han L., Song S., Liu M., Yao S., Liang Z., Cheng H., Ren Z., Liu W., Lin R., Qi G., Liu X., Wu Q., Luo J., Xin H. L., J. Am. Chem. Soc., 2020, 142(29), 12563—12567 |
1 | Liang Q., Li Z., Bai Y., Huang Z. H., Kang F., Yang Q. H., Sci. China Mater., 2017, 60(2), 109—118 |
2 | Xiao Y., Tian C., Tian M., Wu A., Yan H., Chen C., Wang L., Jiao Y., Fu H., Sci. China Mater., 2018, 61(1), 80—90 |
3 | Xuan C., Zhao F., Xiao L., Hao G., Jiang W., J. Solid Rocket Techno., 2018, 41(3), 343—349 |
67 | Zhao K., Nie X., Wang H., Chen S., Quan X., Yu H., Choi W., Zhang G., Kim B., Chen J. G., Nat. Commun., 2020, 11(1), 2455 |
68 | Xu H., Rebollar D., He H., Chong L., Liu Y., Liu C., Sun C. J., Li T., Muntean J. V., Winans R. E., Liu D. J., Xu T., Nat. Energy, 2020, 5(8), 623—632 |
69 | Karapinar D., Huan N. T., Ranjbar Sahraie N., Li J., Wakerley D., Touati N., Zanna S., Taverna D., Galvão Tizei L. H., Zitolo A., Jaouen F., Mougel V., Fontecave M., Angew. Chem. Int. Ed., 2019, 58(42), 15098—15103 |
70 | Bok J., Lee S. Y., Lee B. H., Kim C., Nguyen D. L. T., Kim J. W., Jung E., Lee C. W., Jung Y., Lee H. S., Kim J., Lee K., Ko W., Kim Y. S., Cho S. P., Yoo J. S., Hyeon T., Hwang Y. J., J. Am. Chem. Soc., 2021, 143(14), 5386—5395 |
71 | Zhang N., Zhang X., Tao L., Jiang P., Ye C., Lin R., Huang Z., Li A., Pang D., Yan H., Wang Y., Xu P., An S., Zhang Q., Liu L., Du S., Han X., Wang D., Li Y., Angew. Chem. Int. Ed., 2021, 60(11), 6170—6176 |
72 | Shang H., Wang T., Pei J., Jiang Z., Zhou D., Wang Y., Li H., Dong J., Zhuang Z., Chen W., Wang D., Zhang J., Li Y., Angew. Chem. Int. Ed., 2020, 59(50), 22465—22469 |
73 | Zu X., Li X., Liu W., Sun Y., Xu J., Yao T., Yan W., Gao S., Wang C., Wei S., Xie Y., Adv. Mater., 2019, 31(15), 1808135 |
74 | Zhang E., Wang T., Yu K., Liu J., Chen W., Li A., Rong H., Lin R., Ji S., Zheng X., Wang Y., Zheng L., Chen C., Wang D., Zhang J., Li Y., J. Am. Chem. Soc., 2019, 141(42), 16569—16573 |
75 | Han B. X., Jin X. Y., Sun X. F., Zhang L. B., Chem. J. Chinese Universities, 2022, 43(5), 20220035 |
韩布兴, 金湘元, 孙晓甫, 张礼兵. 高等学校化学学报, 2022, 43(5), 20220035 | |
76 | Gao G., Jiao Y., Waclawik E. R., Du A., J. Am. Chem. Soc., 2016, 138(19), 6292—6297 |
77 | He B. C., Zhang C., Luo P. P., Li Y., Lu T. B., Green Chem., 2020, 22(21), 7552—7559 |
78 | Zhang R., Li P., Wang F., Ye L., Gaur A., Huang Z., Zhao Z., Bai Y., Zhou Y., Appl. Catal. B, 2019, 250, 273—279 |
79 | Cheng L., Yin H., Cai C., Fan J., Xiang Q., Small, 2020, 16(28), 2002411 |
80 | Ma M., Huang Z., Doronkin D. E., Fa W., Rao Z., Zou Y., Wang R., Zhong Y., Cao Y., Zhang R., Zhou Y., Appl. Catal. B, 2022, 300, 120695 |
4 | Zhang B., Fan T., Xie N., Nie G., Zhang H., Adv. Sci., 2019, 6(21), 1901787 |
5 | Chen B., Meinertzhagen I. A., Shaw S. R., J. Comp. Physiol. A, 1999, 185(5), 393—404 |
81 | Zhang H., Wang Y., Zuo S., Zhou W., Zhang J., Lou X. W. D., J. Am. Chem. Soc., 2021, 143(5), 2173—2177 |
82 | Ding J., Liu X., Shi M., Li T., Xia M., Du X., Shang R., Gu H., Zhong Q., Sol. Energy Mater. Sol. Cells, 2019, 195, 34—42 |
83 | Yu Y., Dong X. A., Chen P., Geng Q., Wang H., Li J., Zhou Y., Dong F., ACS Nano, 2021, 15(9), 14453—14464 |
84 | Zhang H., Wei J., Dong J., Liu G., Shi L., An P., Zhao G., Kong J., Wang X., Meng X., Zhang J., Ye J., Angew. Chem. Int. Ed., 2016, 55(46), 14310—14314 |
85 | Li J., Huang H., Xue W., Sun K., Song X., Wu C., Nie L., Li Y., Liu C., Pan Y., Jiang H. L., Mei D., Zhong C., Nat. Catal., 2021, 4(8), 719—729 |
86 | Lei Y. P., Ou H. H., Tao Y., Xiong Y., Chem. J. Chinese Universities, 2022, 43(5), 20220143 |
雷永鹏, 欧鸿辉, 陶雨, 熊禹. 高等学校化学学报, 2022, 43(5), 20220143 | |
87 | Pan Y., Lin R., Chen Y., Liu S., Zhu W., Cao X., Chen W., Wu K., Cheong W. C., Wang Y., Zheng L., Luo J., Lin Y., Liu Y., Liu C., Li J., Lu Q., Chen X., Wang D., Peng Q., Chen C., Li Y., J. Am. Chem. Soc., 2018, 140(12), 4218—4221 |
88 | Yang L., Zeng X., Wang W., Cao D., Adv. Funct. Mater., 2018, 28(7), 1704537 |
89 | Fu S., Zhu C., Song J., Du D., Lin Y., Adv. Energy Mater., 2017, 7(19), 1700363 |
90 | Sun Y., Xu S., Ortíz⁃Ledón C. A., Zhu J., Chen S., Duan J., Exploration, 2021, 1(2), 20210021 |
91 | Song Y., Ji K., Duan H., Shao M., Exploration, 2021, 1(3), 20210050 |
92 | Sun Y., Silvioli L., Sahraie N. R., Ju W., Li J., Zitolo A., Li S., Bagger A., Arnarson L., Wang X., Moeller T., Bernsmeier D., Rossmeisl J., Jaouen F., Strasser P., J. Am. Chem. Soc., 2019, 141(31), 12372—12381 |
93 | Peng H., Liu F., Liu X., Liao S., You C., Tian X., Nan H., Luo F., Song H., Fu Z., Huang P., ACS Catal., 2014, 4(10), 3797—3805 |
94 | Liang H. W., Wei W., Wu Z. S., Feng X., Müllen K., J. Am. Chem. Soc., 2013, 135(43), 16002—16005 |
95 | Li J., Chen M., Cullen D. A., Hwang S., Wang M., Li B., Liu K., Karakalos S., Lucero M., Zhang H., Lei C., Xu H., Sterbinsky G. E., Feng Z., Su D., More K. L., Wang G., Wang Z., Wu G., Nat. Catal., 2018, 1(12), 935—945 |
96 | Luo E., Zhang H., Wang X., Gao L., Gong L., Zhao T., Jin Z., Ge J., Jiang Z., Liu C., Xing W., Angew. Chem. Int. Ed., 2019, 58(36), 12469—12475 |
97 | Xiao M., Zhu J., Li G., Li N., Li S., Cano Z. P., Ma L., Cui P., Xu P., Jiang G., Jin H., Wang S., Wu T., Lu J., Yu A., Su D., Chen Z., Angew. Chem. Int. Ed., 2019, 58(28), 9640—9645 |
98 | Wang T., Cao X., Qin H., Shang L., Zheng S., Fang F., Jiao L., Angew. Chem. Int. Ed., 2021, 60(39), 21237—21241 |
99 | Luo F., Roy A., Silvioli L., Cullen D. A., Zitolo A., Sougrati M. T., Oguz I. C., Mineva T., Teschner D., Wagner S., Wen J., Dionigi F., Kramm U. I., Rossmeisl J., Jaouen F., Strasser P., Nat. Mater., 2020, 19(11), 1215—1223 |
100 | Mu S. C., Xia H. C., Xu S. R., Xue D. P., Yan W. F., Yin H. B., Zhang J. N., Zhao S. Y., Chem. J. Chinese Universities, 2022, 43(5), 20220028 |
木士春, 夏会聪, 徐斯然, 薛冬萍, 闫文付, 阴恒铂, 张佳楠, 赵舒琰. 高等学校化学学报, 2022, 43(5), 20220028 | |
101 | Gu Y., Li J. X., Xi B. J., Xiong S. L., Chem. J. Chinese Universities, 2022, 43(5), 20220036 |
谷雨, 李江潇, 奚宝娟, 熊胜林. 高等学校化学学报, 2022, 43(5), 20220036 | |
102 | Ding S., Lyu Z., Zhong H., Liu D., Sarnello E., Fang L., Xu M., Engelhard M. H., Tian H., Li T., Pan X., Beckman S. P., Feng S., Du D., Li J. C., Shao M., Lin Y., Small, 2021, 17(16), 2004454 |
103 | Li J. C., Xiao F., Zhong H., Li T., Xu M., Ma L., Cheng M., Liu D., Feng S., Shi Q., Cheng H. M., Liu C., Du D., Beckman S. P., Pan X., Lin Y., Shao M., ACS Catal., 2019, 9(7), 5929—5934 |
104 | Zhao L., Zhang Y., Huang L. B., Liu X. Z., Zhang Q. H., He C., Wu Z. Y., Zhang L. J., Wu J., Yang W., Gu L., Hu J. S., Wan L. J., Nat. Commun., 2019, 10(1), 1278 |
105 | Li H., Jia X., Zhang Q., Wang X., Chem, 2018, 4(7), 1510—1537 |
106 | Zhang L., Han L., Liu H., Liu X., Luo J., Angew. Chem. Int. Ed., 2017, 56(44), 13694—13698 |
107 | Fei H., Dong J., Arellano⁃Jiménez M. J., Ye G., Dong Kim N., Samuel E. L. G., Peng Z., Zhu Z., Qin F., Bao J., Yacaman M. J., Ajayan P. M., Chen D., Tour J. M., Nat. Commun., 2015, 6(1), 8668 |
108 | Jiang B., Sun X., Yin X. J., Zhang N. Q., Zhao C. Y., Zhao C. H., Chem. J. Chinese Universities, 2022, 43(5), 20220076 |
姜波, 孙逊, 尹肖菊, 张乃庆, 赵晨阳, 赵程浩. 高等学校化学学报, 2022, 43(5), 20220076 | |
109 | Du Z., Chen X., Hu W., Chuang C., Xie S., Hu A., Yan W., Kong X., Wu X., Ji H., Wan L. J., J. Am. Chem. Soc., 2019, 141(9), 3977—3985 |
110 | Liu Z., Deng Z., He G., Wang H., Zhang X., Lin J., Qi Y., Liang X., Nat. Rev. Earth Environ., 2022, 3(2), 141—155 |
111 | Shi X., Zheng Y., Lei Y., Xue W., Yan G., Liu X., Cai B., Tong D., Wang J., Sci. Total Environ., 2021, 795, 148784 |
112 | Salvia M., Reckien D., Pietrapertosa F., Eckersley P., Spyridaki N. A., Krook⁃Riekkola A., Olazabal M., De Gregorio Hurtado S., Simoes S. G., Geneletti D., Viguié V., Fokaides P. A., Ioannou B. I., Flamos A., Csete M. S., Buzasi A., Orru H., de Boer C., Foley A., Rižnar K., Matosović M., Balzan M. V., Smigaj M., Baštáková V., Streberova E., Šel N. B., Coste L., Tardieu L., Altenburg C., Lorencová E. K., Orru K., Wejs A., Feliu E., Church J. M., Grafakos S., Vasilie S., Paspaldzhiev I., Heidrich O., Renew. Sust. Energ. Rev., 2021, 135, 110253 |
113 | He M., Sun Y., Han B., Angew. Chem. Int. Ed., 2022, 61(15), e202112835 |
114 | Salemdeeb R., Saint R., Clark W., Lenaghan M., Pratt K., Millar F., Resour. Environ. Sustain., 2021, 3, 100019 |
115 | Dou X., Wang Y., Ciais P., Chevallier F., Davis S. J., Crippa M., Janssens⁃Maenhout G., Guizzardi D., Solazzo E., Yan F., Huo D., Zheng B., Zhu B., Cui D., Ke P., Sun T., Wang H., Zhang Q., Gentine P., Deng Z., Liu Z., Innovation, 2022, 3(1), 100182 |
116 | Yuan Y., Lu J., Carbon Energy, 2019, 1(1), 8—12 |
117 | Zhao Q., Yu P., Mahendran R., Huang W., Gao Y., Yang Z., Ye T., Wen B., Wu Y., Li S., Guo Y., Eco⁃Environment & Health, 2022, 1(2), 53—62 |
118 | Tenaw D., Hawitibo A. L., Resour. Environ. Sustain., 2021, 6, 100040 |
119 | Zaidi S. A. H., Hussain M., Uz Zaman Q., Resour. Environ. Sustain., 2021, 4, 100022 |
120 | Chen J. M., Innovation, 2021, 2(3), 100127 |
121 | Wang F., Harindintwali J. D., Yuan Z., Wang M., Wang F., Li S., Yin Z., Huang L., Fu Y., Li L., Chang S. X., Zhang L., Rinklebe J., Yuan Z., Zhu Q., Xiang L., Tsang D. C. W., Xu L., Jiang X., Liu J., Wei N., Kästner M., Zou Y., Ok Y. S., Shen J., Peng D., Zhang W., Barceló D., Zhou Y., Bai Z., Li B., Zhang B., Wei K., Cao H., Tan Z., Zhao L. B.., He X., Zheng J., Bolan N., Liu X., Huang C., Dietmann S., Luo M., Sun N., Gong J., Gong Y., Brahushi F., Zhang T., Xiao C., Li X., Chen W., Jiao N., Lehmann J., Zhu Y. G., Jin H., Schäffer A., Tiedje J. M., Chen J. M., Innovation, 2021, 2(4), 100180 |
122 | Kim J., Kim H., Han G. H., Hong S., Park J., Bang J., Kim S. Y., Ahn S. H., Exploration, 2022, 2(3), 20210077 |
123 | Zhu W., Tackett B. M., Chen J. G., Jiao F., Top. Curr. Chem., 2018, 376(6), 41 |
124 | Zhu W., Fu J., Liu J., Chen Y., Li X., Huang K., Cai Y., He Y., Zhou Y., Su D., Zhu J. J., Lin Y., Appl. Catal. B, 2020, 264, 118502 |
125 | Liu L. X., Zhou Y., Chang Y. C., Zhang J. R., Jiang L. P., Zhu W., Lin Y., Nano Energy, 2020, 77, 105296 |
126 | Zhu W., Michalsky R., Metin Ö., Lv H., Guo S., Wright C. J., Sun X., Peterson A. A., Sun S., J. Am. Chem. Soc., 2013, 135(45), 16833—16836 |
127 | Masood ul Hasan I., Peng L., Mao J., He R., Wang Y., Fu J., Xu N., Qiao J., Carbon Energy, 2021, 3(1), 24—49 |
128 | Shi R., Shang L., Zhou C., Zhao Y., Zhang T., Exploration, 2022, 2(3), 20210046 |
129 | Hussain J., Jónsson H., Skúlason E., ACS Catal., 2018, 8(6), 5240—5249 |
130 | Hasani A., Teklagne M. A., Do H. H., Hong S. H., Van Le Q., Ahn S. H., Kim S. Y., Carbon Energy, 2020, 2(2), 158—175 |
131 | Choi S., Kim C., Suh J. M., Jang H. W., Carbon Energy, 2019, 1(1), 85—108 |
132 | Zhang C., Jun K. W., Gao R., Lee Y. J., Kang S. C., Fuel, 2015, 157, 285—291 |
133 | Becker W. L., Penev M., Braun R. J., J. Energy Resour. Technol., 2018, 141(2), 021901 |
134 | Shin H., Hansen K. U., Jiao F., Nat. Sustainability, 2021, 4(10), 911—919 |
135 | Jouny M., Luc W., Jiao F., Ind. Eng. Chem. Res., 2018, 57(6), 2165—2177 |
136 | Albero J., Peng Y., García H., ACS Catal., 2020, 10(10), 5734—5749 |
137 | Li X., Wang S., Li L., Sun Y., Xie Y., J. Am. Chem. Soc., 2020, 142(21), 9567—9581 |
138 | Ran J., Jaroniec M., Qiao S. Z., Adv. Mater., 2018, 30(7), 1704649 |
139 | Zhu W., Zhang Y. J., Zhang H., Lv H., Li Q., Michalsky R., Peterson A. A., Sun S., J. Am. Chem. Soc., 2014, 136(46), 16132—16135 |
140 | Li Q., Fu J., Zhu W., Chen Z., Shen B., Wu L., Xi Z., Wang T., Lu G., Zhu J. J., Sun S., J. Am. Chem. Soc., 2017, 139(12), 4290—4293 |
141 | Lv J. J., Jouny M., Luc W., Zhu W., Zhu J. J., Jiao F., Adv. Mater., 2018, 30(49), 1803111 |
142 | Li Q., Zhu W., Fu J., Zhang H., Wu G., Sun S., Nano Energy, 2016, 24, 1—9 |
143 | Fu J., Jiang K., Qiu X., Yu J., Liu M., Mater. Today, 2020, 32, 222—243 |
144 | Sun Z., Ma T., Tao H., Fan Q., Han B., Chem, 2017, 3(4), 560—587 |
145 | Wu J., Huang Y., Ye W., Li Y., Adv. Sci., 2017, 4(11), 1700194 |
146 | Ho M. T., Allinson G. W., Wiley D. E., Energy Procedia, 2009, 1(1), 763—770 |
147 | Wu Y., Jiang Z., Lu X., Liang Y., Wang H., Nature, 2019, 575(7784), 639—642 |
148 | Yang H., Lin Q., Wu Y., Li G., Hu Q., Chai X., Ren X., Zhang Q., Liu J., He C., Nano Energy, 2020, 70, 104454 |
149 | Gong Y. N., Jiao L., Qian Y., Pan C. Y., Zheng L., Cai X., Liu B., Yu S. H., Jiang H. L., Angew. Chem. Int. Ed., 2020, 59(7), 2705—2709 |
150 | Zhang T., Han X., Yang H., Han A., Hu E., Li Y., Yang X. Q., Wang L., Liu J., Liu B., Angew. Chem. Int. Ed., 2020, 59(29), 12055—12061 |
151 | Ni W., Liu Z., Zhang Y., Ma C., Deng H., Zhang S., Wang S., Adv. Mater., 2021, 33(1), 2003238 |
152 | Jouny M., Luc W., Jiao F., Ind. Eng. Chem. Res., 2020, 59(16), 8121—8123 |
153 | He H., Wang H. H., Liu J., Liu X., Li W., Wang Y., Molecules, 2021, 26(21), 6501 |
154 | Su J., Zhuang L., Zhang S., Liu Q., Zhang L., Hu G., Chin. Chem. Lett., 2021, 32(10), 2947—2962 |
155 | Cheng N., Zhang L., Doyle⁃Davis K., Sun X., Electrochem. Energy Rev., 2019, 2(4), 539—573 |
[1] | YANG Jingyi, LI Qinghe, QIAO Botao. Synergistic Catalysis Between Ir Single Atoms and Nanoparticles for N2O Decomposition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220388. |
[2] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[3] | REN Shijie, QIAO Sicong, LIU Chongjing, ZHANG Wenhua, SONG Li. Synchrotron Radiation X-Ray Absorption Spectroscopy Research Progress on Platinum Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220466. |
[4] | WANG Sicong, PANG Beibei, LIU Xiaokang, DING Tao, YAO Tao. Application of XAFS Technique in Single-atom Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220487. |
[5] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[6] | YANG Jingyi, SHI Siqi, PENG Huaitao, YANG Qihao, CHEN Liang. Integration of Atomically Dispersed Ga Sites with C3N4 Nanosheets for Efficient Photo-driven CO2 Cycloaddition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220349. |
[7] | WANG Ruyue, WEI Hehe, HUANG Kai, WU Hui. Freezing Synthesis for Single Atom Materials [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220428. |
[8] | TANG Quanjun, LIU Yingxin, MENG Rongwei, ZHANG Ruotian, LING Guowei, ZHANG Chen. Application of Single-atom Catalysis in Marine Energy [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220324. |
[9] | CHU Yuyi, LAN Chang, LUO Ergui, LIU Changpeng, GE Junjie, XING Wei. Single-atom Cerium Sites Designed for Durable Oxygen Reduction Reaction Catalyst with Weak Fenton Effect [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220294. |
[10] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[11] | YAO Qing, YU Zhiyong, HUANG Xiaoqing. Progress in Synthesis and Energy-related Electrocatalysis of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220323. |
[12] | FAN Jianling, TANG Hao, QIN Fengjuan, XU Wenjing, GU Hongfei, PEI Jiajing, CEHN Wenxing. Nitrogen Doped Ultra-thin Carbon Nanosheet Composited Platinum-ruthenium Single Atom Alloy Catalyst for Promoting Electrochemical Hydrogen Evolution Process [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220366. |
[13] | JIANG Bowen, CHEN Jingxuan, CHENG Yonghua, SANG Wei, KOU Zongkui. Recent Progress of Single-atom Materials in Electrochemical Biosensing [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220334. |
[14] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[15] | HAN Fuchao, LI Fujin, CHEN Liang, HE Leiyi, JIANG Yunan, XU Shoudong, ZHANG Ding, QI Lu. Enhance of CoSe2/C Composites Modified Separator on Electrochemical Performance of Li-S Batteries at High Sulfur Loading [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220163. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||