Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (7): 20220395.doi: 10.7503/cjcu20220395
• Review • Previous Articles
WANG Ruhan1,2, JIA Shunhan1,2, WU Limin1,2, SUN Xiaofu1,2(), HAN Buxing1,2,3(
)
Received:
2022-06-05
Online:
2022-07-10
Published:
2022-06-24
Contact:
SUN Xiaofu,HAN Buxing
E-mail:sunxiaofu@iccas.ac.cn;hanbx@iccas.ac.cn
Supported by:
CLC Number:
TrendMD:
WANG Ruhan, JIA Shunhan, WU Limin, SUN Xiaofu, HAN Buxing. CO2-involved Electrochemical C—N Coupling into Value-added Chemicals[J]. Chem. J. Chinese Universities, 2022, 43(7): 20220395.
65 | Feng Y., Yang H., Zhang Y., Huang X., Li L., Cheng T., Shao Q., Nano Lett., 2020, 20(11), 8282—8289 |
66 | Shibata M., Yoshida K., Furuya N., J. Electroanal. Chem., 1995, 387(1/2), 143—145 |
67 | Wu Y., Jiang Z., Lin Z., Liang Y., Wang H., Nat. Sustain., 2021, 4(8), 725—730 |
68 | Lv C., Zhong L., Liu H., Fang Z., Yan C., Chen M., Kong Y., Lee C., Liu D., Li S., Nat. Sustain., 2021, 4(10), 868—876 |
69 | Meng N., Huang Y., Liu Y., Yu Y., Zhang B., Cell Reports Phys. Sci., 2021, 2(3), 100378 |
70 | Dunwell M., Lu Q., Heyes J. M., Rosen J., Chen J. G., Yan Y., Jiao F., Xu B., J. Am. Chem. Soc., 2017, 139(10), 3774—3783 |
71 | Wang J., Zhang H., Jiang K., Cai W., J. Am. Chem. Soc., 2011, 133(38), 14876—14879 |
72 | Saravanakumar D., Song J., Lee S., Hur N. H., Shin W., ChemSusChem, 2017, 10(20), 3999—4003 |
73 | Kim J. E., Jang J. H., Lee K. M., Balamurugan M., Jo Y. I., Lee M. Y., Choi S., Im S. W., Nam K. T., Angew. Chem. Int. Ed., 2021, 60(40), 21943—21951 |
74 | Li J., Kornienko N., Chem. Sci., 2022, 13(14), 3957—3964 |
75 | Tao Z., Wu Y., Wu Z., Shang B., Rooney C., Wang H., J. Energy Chem., 2022, 65, 367—370 |
76 | Rooney C. L., Wu Y., Tao Z., Wang H., J. Am. Chem. Soc., 2021, 143(47), 19983—19991 |
77 | Mayr H., Ofial A. R., J. Phys. Org. Chem., 2008, 21(7/8), 584—595 |
78 | Feroci M., Orsini M., Rossi L., Sotgiu G., Inesi A., J. Org. Chem., 2007, 72(1), 200—203 |
79 | Li S. M., Shi Y., Zhang J. J., Wang Y., Wang H., Lu J. X., ChemSusChem, 2021, 14(9), 2050—2055 |
80 | Xiong T., Zhou X., Zhang M., Tang H., Pan Y., Liang Y., Green Chem., 2021, 23(12), 4328—4332 |
81 | Sun X., Zhu Q., Hu J., Kang X., Ma J., Liu H., Han B., Chem. Sci., 2017, 8(8), 5669—5674 |
82 | Zhou W. P., Lewera A., Larsen R., Masel R. I., Bagus P. S., Wieckowski A., J. Phys. Chem. B, 2006, 110(27), 13393—13398 |
83 | Li J., Zhang Y., Kuruvinashetti K., Kornienko N., Nat. Rev. Chem., 2022, 6(5), 303—319 |
84 | Lu X., Zhu C., Wu Z., Xuan J., Francisco J. S., Wang H., J. Am. Chem. Soc., 2020, 142(36), 15438—15444 |
85 | Chen X., Chen J., Alghoraibi N. M., Henckel D. A., Zhang R., Nwabara U. O., Madsen K. E., Kenis P. J., Zimmerman S. C., Gewirth A. A., Nat. Catal., 2021, 4(1), 20—27 |
1 | He M., Sun Y., Han B., Angew. Chem. Int. Ed., 2022, 61, e202112835 |
2 | Manabe S., Wetherald R. T., J. Atmos. Sci., 1975, 32(1), 3—15 |
3 | He C., Chen S., Long R., Song L., Xiong Y., Sci. China Chem., 2020, 63, 1721—1726 |
4 | Jia S., Ma X., Sun X., Han B., CCS Chem., 2022, DOI: 10.31635/ccschem.022.202202094 |
5 | Kätelhön A., Meys R., Deutz S., Suh S., Bardow A., Proc. Natl. Acad. Sci. USA, 2019, 116(23), 11187—11194 |
6 | Yang D., Zhu Q., Han B., The Innovation, 2020, 100016 |
7 | Edenhofer O., Climate Change 2014: Mitigation of Climate Change, Cambridge University Press, Cambridge, 2015, 94—105 |
8 | Tan X., Sun X., Han B., Natl. Sci. Rev., 2022, 9(4), nwab022 |
9 | Wang Y., Zhong Z., Liu T., Liu G., Hong X., Acta Phys.⁃Chim. Sin., 2021, 37(5), 2007089 |
10 | Meng Y., Kuang S., Liu H., Fan Q., Ma X., Zhang S., Acta Phys.⁃Chim. Sin., 2021, 37(5), 2006034 |
11 | Hepburn C, Adlen E, Beddington J, Carter E. A., Fuss S., Mac Dowell N., Minx J. C., Smith P., Williams C. K., Nature, 2019, 575(7781), 87—97 |
12 | Dinh C., Burdyny T., Kibria M. G., Seifitokaldani A., Gabardo C. M., de Arquer F. P. G., Kiani A., Edwards J. P., de Luna P., Bushuyev O. S., Zou C., Quintero⁃Bermudez R., Pang Y., Sinton D., Sargent E. H., Science, 2018, 360(6390), 783—787 |
13 | Wu L., Guo W., Sun X., Han B., Pure Appl. Chem., 2021, 93(7), 777—797 |
14 | Wan X., Guo W., Dong X., Wu H., Sun X., Chu M., Han S., Zhai J., Xia W., Jia S., He M., Han B., Green Chem., 2022, 24, 1090—1095 |
15 | Schrag D. P., Science, 2007, 315(5813), 812—813 |
16 | Whipple D. T., Kenis P. J., J. Phys. Chem. Lett., 2010, 1(24), 3451—3458 |
17 | Meyer T. J., Acc. Chem. Res., 1989, 22(5), 163—170 |
18 | Alstrum⁃Acevedo J. H., Brennaman M. K., Meyer T. J., Inorg. Chem., 2005, 44(20), 6802—6827 |
19 | Omae I., Coord. Chem. Rev., 2012, 256(13), 1384—1405 |
20 | Concepcion J. J., House R. L., Papanikolas J. M., Meyer T. J., Proc. Natl. Acad. Sci. USA, 2012, 109, 15560—15564 |
21 | Sakakura T., Choi J., Yasuda H., Chem. Rev., 2007, 107(6), 2365—2387 |
22 | Mori K., Yamashita H., Anpo M., RSC Adv., 2012, 2(8), 3165—3172 |
23 | Zhu Q., Yang D., Liu H., Sun X., Chen C., Bi J., Liu J., Wu H., Han B., Angew. Chem. Int. Ed., 2020, 132(23), 8981—8986 |
24 | Wang H., Wu Y., Zhao Y., Liu Z., Acta Phys.⁃Chim. Sin., 2021, 37(5), 2010022 |
25 | König M., Vaes J., Klemm E., Pant D., IScience, 2019, 19, 135—160 |
26 | Wang H., Wu Y., Zhao Y., Liu Z., Acta Phys.⁃Chim. Sin., 2021, 37(5), 2010022 |
27 | Jouny M., Lv J., Cheng T., Ko B. H., Zhu J., Goddard W. A., Jiao F., Nat. Chem., 2019, 11(9), 846—851 |
28 | Gao D., Wei P., Li H., Lin L., Wang G., Bao X., Acta Phys.⁃Chim. Sin., 2021, 37(5),2009021 |
29 | Pătru A., Binninger T., Pribyl B., Schmidt T. J., J. Electrochem. Soc., 2019, 166(2), F34 |
30 | Li Y. C., Zhou D., Yan Z., Gonçalves R. H., Salvatore D. A., Berlinguette C. P., Mallouk T. E., ACS Energy Lett., 2016, 1(6), 1149—1153 |
31 | Xing Y., Kong X., Guo X., Liu Y., Li Q., Zhang Y., Sheng Y., Yang X., Geng Z., Zeng J., Sci. Adv., 2020, 7(22), 1902989 |
32 | Feng X., Zou H., Zheng R., Wei W., Wang R., Zou W., Lim G., Hong J., Duan L., Chen H., Nano Lett., 2022, 22(4), 1656—1664 |
33 | Liang Z., Zhuang T., Seifitokaldani A., Li J., Huang C., Tan C., Li Y., de Luna P., Dinh C. T., Hu Y., Xiao Q., Hsieh P., Wang Y., Li F., Quintero⁃Bermudez R., Zhou Y., Chen P., Pang Y., Lo S., Chen L., Tan H., Xu Z., Zhao S., Sinton D., Sargent E. H., Nat. Commun., 2018, 9, 3828 |
34 | Ning H., Fei X., Tan Z., Wang W., Yang Z., Wu M., ACS Appl. Nano Mater., 2022, 5(2), 2335—2342 |
35 | Luo H., Li B., Ma J., Cheng P., Angew. Chem. Int. Ed., 2022, 202116736 |
36 | Ma L., Hu W., Mei B., Liu H., Yuan B., Zang J., Chen T., Zou L., Zou Z., Yang B., ACS Catal., 2020, 10(8), 4534—4542 |
37 | Chen J., Wang T., Wang X., Yang B., Sang X., Zheng S., Yao S., Li Z., Zhang Q., Lei L., Adv. Funct. Mater., 2022,2110174 |
38 | Hao Z., Chen J., Zhang D., Zheng L., Li Y., Yin Z., He G., Jiao L., Wen Z., Lv X., Sci. Bull., 2021, 66(16), 1649—1658 |
39 | Birdja Y. Y., Pérez⁃Gallent E., Figueiredo M. C., Göttle A. J., Calle⁃Vallejo F., Koper M., Nat. Energy, 2019, 4(9), 732—745 |
40 | Singh M. R., Clark E. L., Bell A. T., Phys. Chem. Chem. Phys., 2015, 17(29), 18924—18936 |
41 | Wang Y., Wang C., Li M., Yu Y., Zhang B., Chem. Soc. Rev., 2021, 50(12), 6720—6733 |
42 | Shen H., Choi C., Masa J., Li X., Qiu J., Jung Y., Sun Z., Chem, 2021, 7(7), 1708—1754 |
43 | Wang C., Liu Y., Ren H., Guan Q., Chou S., Li W., ACS Catal., 2022, 12(4), 2513—2521 |
44 | Zhang E., Wang T., Yu K., Liu J., Chen W., Li A., Rong H., Lin R., Ji S., Zheng X., Wang Y., Zheng L., Chen C., Wang D., Zhang J., Li Y., J. Am. Chem. Soc., 2019, 141(42), 16569—16573 |
45 | Sun X., Lu L., Zhu Q., Wu C., Yang D., Chen C., Han B., Angew. Chem. Int. Ed., 2018, 57(9), 2427—2431 |
46 | Guo W., Liu S., Tan X., Wu R., Yan X., Chen C., Zhu Q., Zheng L., Ma J., Zhang J., Huang Y., Sun X., Han B., Angew. Chem. Int. Ed., 2021, 60(40), 21979—21987 |
47 | Smil V., Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production, MIT Press, Cambridge, 2004, 83—127 |
48 | Lv C., Lee C., Zhong L., Liu H., Liu J., Yang L., Yan C., Yu W., Hong H. H., Qi Z., ACS Nano, 2022, 16(5), 8213—8222 |
49 | Elvers B., Ullmann′s Encyclopedia of Industrial Chemistry, Verlag Chemie, New Jersey, 1991 |
50 | Chen C., He N., Wang S., Small Sci., 2021, 1(11), 2100070 |
51 | Li P., Fang Z., Jin Z., Yu G., Chem. Phys. Rev., 2021, 2(4), 41305 |
52 | Fu J., Yang Y., Hu J., ACS Mater. Lett., 2021, 3(10), 1468—1476 |
53 | Hu L., Xing Z., Feng X., ACS Energy Lett., 2020, 5(2), 430—436 |
54 | Chen C., Zhu X., Wen X., Zhou Y., Zhou L., Li H., Tao L., Li Q., Du S., Liu T., Nat. Chem., 2020, 12(8), 717—724 |
55 | Yuan M., Chen J., Bai Y., Liu Z., Zhang J., Zhao T., Wang Q., Li S., He H., Zhang G., Angew. Chem. Int. Ed., 2021, 133(19), 11005—11013 |
56 | Yuan M., Chen J., Bai Y., Liu Z., Zhang J., Zhao T., Shi Q., Li S., Wang X., Zhang G., Chem. Sci., 2021, 12(17), 6048—6058 |
57 | Yuan M., Chen J., Xu Y., Liu R., Zhao T., Zhang J., Ren Z., Liu Z., Streb C., He H., Energy Environ. Sci., 2021, 14(12), 6605—6615 |
58 | Yuan M., Zhang H., Xu Y., Liu R., Wang R., Zhao T., Zhang J., Liu Z., He H., Yang C., Chem Catalysis, 2022, 2(2), 309—320 |
59 | Yuan M., Chen J., Zhang H., Li Q., Zhou L., Yang C., Liu R., Liu Z., Zhang S., Zhang G., Energy Environ. Sci., 2022, 15(5), 2084—2095 |
60 | Zhu X., Zhou X., Jing Y., Li Y., Nat. Commun., 2021, 4080 |
61 | Chen G., Yuan Y., Jiang H., Ren S., Ding L., Ma L., Wu T., Lu J., Wang H., Nat. Energy, 2020, 5(8), 605—613 |
62 | Su J. F., Kuan W., Liu H., Huang C. P., Appl. Catal. B, 2019, 257117909 |
63 | Wang Y., Xu A., Wang Z., Huang L., Li J., Li F., Wicks J., Luo M., Nam D., Tan C., J. Am. Chem. Soc., 2020, 142(12), 5702—5708 |
64 | Cao N., Quan Y., Guan A., Yang C., Ji Y., Zhang L., Zheng G., J. Colloid Interface Sci., 2020, 577, 109—114 |
[1] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[2] | WANG Sicong, PANG Beibei, LIU Xiaokang, DING Tao, YAO Tao. Application of XAFS Technique in Single-atom Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220487. |
[3] | WANG Xintian, LI Pan, CAO Yue, HONG Wenhao, GENG Zhongxuan, AN Zhiyang, WANG Haoyu, WANG Hua, SUN Bin, ZHU Wenlei, ZHOU Yang. Techno-economic Analysis and Industrial Application Prospects of Single-atom Materials in CO2 Catalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220347. |
[4] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[5] | YAO Qing, YU Zhiyong, HUANG Xiaoqing. Progress in Synthesis and Energy-related Electrocatalysis of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220323. |
[6] | HAN Fuchao, LI Fujin, CHEN Liang, HE Leiyi, JIANG Yunan, XU Shoudong, ZHANG Ding, QI Lu. Enhance of CoSe2/C Composites Modified Separator on Electrochemical Performance of Li-S Batteries at High Sulfur Loading [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220163. |
[7] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192. |
[8] | WANG Lijun, LI Xin, HONG Song, ZHAN Xinyu, WANG Di, HAO Leiduan, SUN Zhenyu. Efficient Electrocatalytic CO2 Reduction to CO by Tuning CdO-Carbon Black Interface [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220317. |
[9] | YANG Lijun, YU Yang, ZHANG Lei. Construction of Dual-functional 2D/3D Hydrid Co2P-CeO x Heterostructure Integrated Electrode for Electrocatalytic Urea Oxidation Assisted Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220082. |
[10] | XIA Tian, WAN Jiawei, YU Ranbo. Progress of the Structure-property Correlation of Heteroatomic Coordination Structured Carbon-based Single-atom Electrocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220162. |
[11] | ZHANG Hongwei, CHEN Wen, ZHAO Meiqi, MA Chao, HAN Yunhu. Research Progress of Single Atom Catalysts in Electrochemistry [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220129. |
[12] | WU Jun, HE Guanchao, FEI Huilong. Self-supported Film Electrodes Decorated with Single Atoms for Energy Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220051. |
[13] | CHEN Changli, MI Wanliang, LI Yujing. Research Progress of Single Atom Catalysts in Electrochemical Hydrogen Cycling [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220065. |
[14] | JIN Xiangyuan, ZHANG Libing, SUN Xiaofu, HAN Buxing. Electrocatalytic CO2 Reduction over Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220035. |
[15] | CHEN Zhaoyang, XUE Yurui, LI Yuliang. Synthesis and Applications of Graphdiyne Based Zerovalent Atomic Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220063. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||