Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (12): 3547.doi: 10.7503/cjcu20210639
• Review • Previous Articles Next Articles
HAN Muyao, ZHAO Lina(), SUN Jie(
)
Received:
2021-09-06
Online:
2021-12-10
Published:
2021-10-13
Contact:
ZHAO Lina,SUN Jie
E-mail:zhaolina841015@163.com;jies@tju.edu.cn
Supported by:
CLC Number:
TrendMD:
HAN Muyao, ZHAO Lina, SUN Jie. Advances in Silicon and Silicon-based Anode Materials[J]. Chem. J. Chinese Universities, 2021, 42(12): 3547.
Fig.2 Morphology characterization and electrochemical properties of Si materials with different dimensions(A—C) Zero-dimensional materials[21]. Copyright 2012, American Chemical Society. (D—F) one-dimensional materials[35]. Copyright 2013, American Chemical Society. (G—I) two-dimensional materials[46]. Copyright 2016, American Chemical Society. (J—L) three-dimensional materials[49]. Copyright 2017, Wiley‐VCH.
Fig.3 HRTEM image of a single Si0.25Ge0.75 nanocolumn(A), EDS line?scan across the nanocolumn(B) and rate capacity of Ge, Si0.25Ge0.75, Si0.5Ge0.5, Si0.75Ge0.25 and Si(C)[65]Copyright 2013, American Chemical Society.
Fig.4 Schematic illustration of Ag nanoparticles forming an interconnected network providing electron pathways from the current collector to the whole surface area of the 3D porous silicon particles(A), voltage profiles of the two electrodes cycled between 0.005?V and 1.0?V(vs. Li+/Li) at a cycling rate of 0.2C: 3D macroporous Si(B) and Ag?coated 3D macroporous Si(C)[75]Copyright 2010, Wiley‐VCH.
Fig.5 Schematic diagram of manufacturing process of Si@a?TiO2(A)[76], pSiMPs coating design and structural evolution in the cycle process(B) and time?lapse images of the lithium process of nC?pSiMPs(C)[78](A) Copyright 2017, Wiley‐VCH. (B,C) Copyright 2015, American Chemical Society.
Fig.6 Prelithiation improving initial Coulomb efficiency(A) Graphical illustration of prelithiation process of c?SiOx electrode [30]. Copyright 2016, American Chemical Society. (B) Schematic diagram of the artificial SEI coating formed by reduction of 1?fluorodecane on the surface of LixSi NPs in cyclohexane [80].Copyright 2015, American Chemical Society.
Fig.7 Schematic diagram of the passivation mechanism of sulfide as part of SEI in the presence of PAA binder[84]Copyright 2019, American Chemical Society.
72 | Sun Y., Lopez J., Lee H. W., Liu N., Zheng G., Wu C. L., Sun J., Liu W., Chung J. W., Bao Z., Cui Y., Adv. Mater.,2016, 28, 2455—2461 |
73 | Wang B., Li X., Qiu T., Luo B., Ning J., Li J., Zhang X., Liang M., Zhi L., Nano Lett., 2013, 13(11), 5578—5584 |
74 | Shen X., Mu D., Chen S., Xu B., Wu B., Wu F., J. Alloys Compd., 2013, 552, 60—64 |
75 | Yu Y., Gu L., Zhu C., Tsukimoto S., van Aken P. A., Maier J., Adv. Mater., 2010, 22(20), 2247—2250 |
76 | Yang J., Wang Y., Li W., Wang L., Fan Y., Jiang W., Luo W., Wang Y., Kong B., Selomulya C., Liu H. K., Dou S. X., Zhao D., Adv. Mater., 2017, 29(48), 1—7 |
77 | Lu Z., Liu N., Lee H. W., Zhao J., Li W. Y., Li Y. Z., Cui Y., ACS Nano,2015, 9(3), 2540—2547 |
78 | Jia H., Zheng J., Song J., Luo L., Yi R., Estevez L., Zhao W., Patel R., Li X., Zhang J. G., Nano Energy, 2018, 50, 589—597 |
79 | Seong I. W., Kim K. T., Yoon W. Y., J. Power Sources, 2009, 189(1), 511—514 |
80 | Zhao J., Lu Z., Wang H., Liu W., Lee H. W., Yan K., Zhuo D., Lin D., Liu N., Cui Y., J. Am. Chem. Soc., 2015, 137(26), 8372—8375 |
81 | Wang X. Y., Liu C., Zhang S. J., Wang H. P., Wang R. Y., Li Y. T., Sun J., ACS Appl. Energy Mater., 2021, 4, 5246—5254 |
82 | Zhan R. M., Wang X. C., Wang Z. H., Seh Z. W., Wang L., Sun Y. M., Adv. Energy Mater.,2021, 11(35), 1—20 |
83 | Komaba S., Yabuuchi N., Ozeki T., Han Z. J., Shimomura K., Yui H., Katayama Y., Miura T., J. Phys. Chem. C,2012, 116(1), 1380—1389 |
84 | Parikh P., Sina M., Banerjee A., Wang X., D’Souza M. S., Doux J. M., Wu E. A., Trieu O. Y., Gong Y., Zhou Q., Snyder K., Meng Y. S., Chem. Mater.,2019, 31(7), 2535—2544 |
85 | Wang S., Duan Q., Lei J., Yu D. Y. W., J. Power Sources, 2020, 468, 228365 |
86 | Chen P., Huang W., Liu H., Cao Z., Yu Y., Liu Y., Shan Z., J. Mater. Sci., 2019, 54(12), 8941—8954 |
87 | Liu T. F., Zhang B., Sheng O. W., Nai J. W., Wang Y., Liu Y. J., Tao X. Y., Chem. J. Chinese Universities, 2021, 42(5), 1446—1463(刘铁峰, 张奔, 盛欧微, 佴建威, 王垚, 刘育京, 陶新永. 高等学校化学学报, 2021, 42(5), 1446—1463) |
88 | Liu G., Xun S., Vukmirovic N., Song X., Olalde⁃Velasco P., Zheng H., Battaglia V. S., Wang L., Yang W., Adv. Mater., 2011, 23(40), 4679—4683 |
89 | Qin D., Xue L., Du B., Wang J., Nie F., Wen L., J. Mater. Chem. A, 2015, 3(20), 10928—10934 |
90 | Li Z. H., Zhang Y. P., Liu T. F., Gao X. H., Li S. Y., Ling M., Liang C. D., Zheng J. C., Lin Z., Adv. Energy Mater., 2020, 10(20), 1903110 |
91 | Zhu G., Yang S., Wang Y., Qu Q., Zheng H., RSC Adv., 2019, 9(1), 435—443 |
92 | Tesemma M., Wang F. M., Haregewoin A. M., Hamidah N. L., Muhammad Hendra P., Lin S. D., Chern C. S., Pham Q. T., Su C. H., ACS Sustain. Chem. Eng., 2019, 7(7), 6640—6653 |
1 | Diouf B., Pode R., Renew. Energy, 2015, 76, 375—380 |
2 | Erickson E. M., Ghanty C., Aurbach D., J. Alloys Compd., 2014, 5(19), 3313—3324 |
3 | Kim T., Park J., Chang S. K., Choi S., Ryu J. H., Song H., Adv. Energy Mater., 2012, 2(7), 860—872 |
4 | Magasinski A., Dixon P., Hertzberg B., Kvit A., Ayala J., Yushin G., Nat. Mater., 2010, 9(4), 353—358 |
5 | Chen T., Jin Y., Lv H., Yang A., Liu M., Chen B., Xie Y., Chen Q., Trans. Tianjin Univ., 2020, 26(3), 208—217 |
6 | Lee J. K., Oh C., Kim N., Hwang J. Y., Sun Y. K., J. Mater. Chem. A, 2016, 4(15), 5366—5384 |
7 | Wang J., Xu T., Huang X., Li H., Ma T., RSC Adv., 2016, 6(90), 87778—87790 |
8 | Rahman M. A., Song G., Bhatt A. I., Wong Y. C., Wen C., Adv. Funct. Mater., 2016, 26(5), 647—678 |
9 | Li J., Dahn J. R., J. Electrochem. Soc., 2007, 154(3), A156 |
10 | Zuo X., Zhu J., Mueller⁃Buschbaum P., Cheng Y. J., Nano Energy, 2017, 31, 113—143 |
11 | Zhang W. J., J. Power Sources, 2011, 196(1), 13—24 |
12 | Wu H., Cui Y., Nano Today, 2012, 7(5), 414—429 |
13 | Wang D., Gao M., Pan H., Wang J., Liu Y., J. Power Sources, 2014, 256, 190—199 |
14 | Ahn D., Kim C., Lee J. G., Park B., J. Solid State Chem., 2008, 181(9), 2139—2142 |
15 | Lv P., Zhao H., Wang J., Liu X., Zhang T., Xia Q., J. Power Sources, 2013, 237, 291—294 |
16 | Terranova M. L., Orlanducci S., Tamburri E., Guglielmotti V., Rossi M., J. Power Sources, 2014, 246, 167—177 |
17 | Hwa Y., Kim W. S., Hong S. H., Sohn H. J., Electrochim. Acta, 2012, 71, 201—205 |
18 | Wu H., Chan G., Choi J. W., Ryu I., Yao Y., McDowell M. T., Lee S. W., Jackson A., Yang Y., Hu L., Nat. Nanotechnol., 2012, 7(5), 310—315 |
19 | Chan C. K., Peng H., Liu G., McIlwrath K., Zhang X. F., Huggins R. A., Cui Y., Nat. Nanotechnol., 2008, 3(1), 31—35 |
20 | Hertzberg B., Alexeev A., Yushin G., J. Am. Chem. Soc., 2010, 132(25), 8548—8549 |
21 | Liu N., Wu H., McDowell M. T., Yao Y., Wang C., Cui Y., Nano Lett., 2012, 12(6), 3315—3321 |
22 | Li Y., Yan K., Lee H. W., Lu Z., Liu N., Cui Y., Nat. Energy, 2016, 1(2), 1—9 |
23 | Yao Y., McDowell M. T., Ryu I., Wu H., Liu N., Hu L., Nix W. D., Cui Y., Nano Lett., 2011, 11(7), 2949—2954 |
24 | Wu H., Yu G., Pan L., Liu N., McDowell M. T., Bao Z., Cui Y., Nat. Commun., 2013, 4(1), 1—6 |
25 | Kwon T., Jeong Y. K., Deniz E., AlQaradawi S. Y., Choi J. W., Coskun A., ACS Nano, 2015, 9(11), 11317—11324 |
26 | Jeong Y. K., Kwon T., Lee I., Kim T. S., Coskun A., Choi J. W., Nano Lett., 2014, 14(2), 864—870 |
27 | Park M. H., Kim M. G., Joo J., Kim K., Kim J., Ahn S., Cui Y., Cho J., Nano Lett., 2009, 9(11), 3844—3847 |
28 | Ling M., Xu Y., Zhao H., Gu X., Qiu J., Li S., Wu M., Song X., Yan C., Liu G., Zhang S., Nano Energy, 2015, 12, 178—185 |
29 | Jaumann T., Balach J., Klose M., Oswald S., Eckert J., Giebeler L., J. Electrochem. Soc., 2016, 163(3), A557—A564 |
30 | Kim H. J., Choi S., Lee S. J., Seo M. W., Lee J. G., Deniz E., Lee Y. J., Kim E. K., Choi J. W., Nano Lett., 2016, 16(1), 282—288 |
31 | Ko M., Chae S., Ma J., Kim N., Lee H. W., Cui Y., Cho J., Nature Energy, 2016, 1(9), 1—8 |
32 | Obrovac M. N., Chevrier V. L., Chem. Rev., 2014, 114(23), 11444—11502 |
33 | Casimir A., Zhang H., Ogoke O., Amine J. C., Lu J., Wu G., Nano Energy, 2016, 27, 359—376 |
34 | Tiwari J. N., Tiwari R. N., Kim K. S., Prog. Mater. Sci., 2012, 57(4), 724—803 |
35 | Wang B., Li X., Zhang X., Luo B., Jin M., Liang M., Dayeh S. A., Picraux S. T., Zhi L., ACS Nano, 2013, 7(2), 1437—1445 |
36 | Lim K. W., Lee J. I., Yang J., Kim Y. K., Jeong H. Y., Park S., Shin H. S., ACS Appl. Mater. Interfaces, 2014, 6(9), 6340—6345 |
37 | Cao F., Deng J., Xin S., Ji H., Schmidt O. G., Wan L., Guo Y., Adv. Mater., 2011, 23(38), 4415—4420 |
38 | Chockla A. M., Klavetter K. C., Mullins C. B., Korgel B. A., Chem. Mater., 2012, 24(19), 3738—3745 |
39 | Chan C. K., Patel R. N., O’connell M. J., Korgel B. A., Cui Y., ACS Nano, 2010, 4(3), 1443—1450 |
40 | Gohier A., Laik B., Pereira⁃Ramos J. P., Cojocaru C. S., Tran⁃Van P., J. Power Sources, 2012, 203, 135—139 |
41 | Ge M., Rong J., Fang X., Zhou C., Nano Lett., 2012, 12(5), 2318—2323 |
42 | Iijima S., Nature, 1991, 354(6348), 56—58 |
43 | Yao Y., Liu N., McDowell M. T., Pasta M., Cui Y., Energy Environ. Sci., 2012, 5(7), 7927—7930 |
44 | Chen Z., Dahn J. R., J. Electrochem. Soc., 2002, 149(9), A1184 |
45 | Yu C., Li X., Ma T., Rong J., Zhang R., Shaffer J., An Y., Liu Q., Wei B., Jiang H., Adv. Energy Mater., 2012, 2(1), 68—73 |
46 | Ryu J., Hong D., Shin M., Park S., ACS Nano, 2016, 10(11), 10589—10597 |
47 | Sun H., Zhu J., Baumann D., Peng L., Xu Y., Shakir I., Huang Y., Duan X., Nat. Rev. Mater., 2019, 4(1), 45—60 |
48 | Yang T., Tian X., Li X., Wang K., Liu Z., Guo Q., Song Y., Chem. Eur. J., 2017, 23(9), 2165—2170 |
49 | Xu Q., Li J., Sun J., Yin Y., Wan L., Guo Y., Adv. Energy Mater., 2017, 7(3), 1601481 |
50 | Liu C., Wang Y., Sun J., Chen A., Trans. Tianjin Univ., 2020, 26(2), 104—126 |
51 | Gao P., Fu J., Yang J., Lv R., Wang J., Nuli Y., Tang X., Phys. Chem. Chem. Phys., 2009, 11(47), 11101—11105 |
52 | Chen T., Zhang Q., Xu J., Pan J., Cheng Y. T., RSC Adv., 2016, 6(35), 29308—29313 |
53 | Fleischauer M. D., Obrovac M. N., Dahn J. R., J. Electrochem. Soc., 2008, 155(11), A851 |
54 | Dahn J. R., Mar R. E., Fleischauer M. D., Obrovac M. N., J. Electrochem. Soc., 2006, 153(6), A1211 |
55 | Zhou R., Guo H., Yang Y., Wang Z., Li X., Zhou Y., J. Alloys Compd., 2016, 689, 130—137 |
56 | Cao Z., Liu H., Huang W., Chen P., Liu Y., Yu Y., Shan Z., Meng S., Trans. Tianjin Univ., 2020, 26(1), 13—21 |
57 | Liu Y., Wen Z. Y., Wang X. Y., Hirano A., Imanishi N., Takeda Y., J. Power Sources, 2009, 189(1), 733—737 |
58 | Luo W., Wang Y., Chou S., Xu Y., Li W., Kong B., Dou S. X., Liu H. K., Yang J., Nano Energy, 2016, 27, 255—264 |
59 | Tao H. C., Yang X. L., Zhang L. L., Ni S. B., Ionics, 2014, 20(11), 1547—1552 |
60 | Yang J., Wang Y. X., Chou S. L., Zhang R., Xu Y., Fan J., Zhang W., Liu H. K., Zhao D., Dou S. X., Nano Energy, 2015, 18, 133—142 |
61 | Tian H., Tan X., Xin F., Wang C., Han W., Nano Energy, 2015, 11, 490—499 |
62 | Sohn M., Kim D. S., Park H. Il, Kim J. H., Kim H., Electrochim. Acta, 2016, 196, 197—205 |
63 | Chou S. L., Wang J. Z., Choucair M., Liu H. K., Stride J. A., Dou S. X., Electrochem. Commun., 2010, 12(2), 303—306 |
64 | Huang Y. Y., Han D., He Y. B., Yun Q., Liu M., Qin X., Li B., Kang F., Electrochim. Acta, 2015, 184, 364—370 |
65 | Abel P. R., Chockla A. M., Lin Y. M., Holmberg V. C., Harris J. T., Korgel B. A., Heller A., Mullins C. B., ACS Nano, 2013, 7(3), 2249—2257 |
66 | Beaulieu L. Y., Hewitt K. C., Turner R. L., Bonakdarpour A., Abdo A. A., Christensen L., Eberman K. W., Krause L. J., Dahn J. R., J. Electrochem. Soc., 2002, 150(2), A149 |
67 | Lee J. I., Ko Y., Shin M., Song H. K., Choi N. S., Kim M. G., Park S., Energy Environ. Sci., 2015, 8(7), 2075—2084 |
68 | Du F. H., Li B., Fu W., Xiong Y. J., Wang K. X., Chen J. S., Adv. Mater., 2014, 26(35), 6145—6150 |
69 | Wu H., Yu G., Pan L., Liu N., McDowell M. T., Bao Z., Cui Y., Nat. Commun., 2013, 4(1), 1—6 |
70 | Du F. H., Wang K. X., Chen J. S., J. Mater. Chem. A, 2016, 4(1), 32—50 |
71 | Jin Y., Li S., Kushima A., Zheng X., Sun Y., Xie J., Sun J., Xue W., Zhou G., Wu J., Shi F., Zhang R., Zhu Z., So K., Cui Y., Li J., Energy Environ. Sci.,2017, 10(2), 580—592 |
[1] | LUO Xinyan, JIA Ruonan, XIANG Yong, ZHANG Xiaokun. Progress on the Stretchable Composite Solid Polymer Electrolytes [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220149. |
[2] | JIA Yanggang, SHAO Xia, CHENG Jie, WANG Pengpeng, MAO Aiqin. Preparation and Lithium Storage Performance of Pseudocapacitance-controlled Perovskite High-entropy Oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Anode Materials [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220157. |
[3] | PENG Kuilin, LI Guilin, JIANG Chongyang, ZENG Shaojuan, ZHANG Xiangping. Research Progress for the Role of Electrolytes in the CO2 Electrochemical Reduction [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220238. |
[4] | GUO Jinchang, LIU Fanglin. Planar Pentacoordinate Silicon and Germanium in XBe5H6(X=Si, Ge) Clusters [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210807. |
[5] | QIAO Zhenghua, FAN Qi, HAO Jingcheng. Silicone Surfactant-enhanced Dual Networks and High Temperature Resistance Porous Silicone Elastomers [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220384. |
[6] | YANG Yingjie, ZHANG Xiaorong, SUN Yuxue, LIU Jun, XIE Haiming. Synthesis of a Dual-lithium-salt Comb Polymer Electrolyte and Its Electrochemical Performance [J]. Chem. J. Chinese Universities, 2021, 42(9): 2861. |
[7] | WU Tonghua, YUE Xigui, MEI Xiaohan, LIANG Liubo, PENG Xin, MA Youmei, ZHANG Shuling. Preparation of MWCNTs/PEEK Electromagnetic Shielding Composites with Sandwich Structure [J]. Chem. J. Chinese Universities, 2021, 42(8): 2627. |
[8] | LI Huiyang, ZHU Siying, LI Sha, ZHANG Qiaobao, ZHAO Jinbao, ZHANG Li. Influencing Factors and Promotion Strategies of the First-cycle Coulombic Efficiency of Silicon Suboxide Anodes in Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(8): 2342. |
[9] | WU Zhuoyan, LI Zhi, ZHAO Xudong, WANG Qian, CHEN Shunpeng, CHANG Xinghua, LIU Zhiliang. A Highly Efficient One-step Preparation Method of Nano-silicon and Carbon Composite for High-performance Lithium Ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(8): 2500. |
[10] | TIAN Runsai, LU Qian, ZHANG Hongbin, ZHANG Bo, FENG Yuanyuan, WEI Jinxiang, FENG Jijun. Design and Construction of N-Doping Carbon in⁃situ Coated Cu2O/Co3O4@C Heterostructured Composite Material for Highly Efficient Lithium-ion Storage [J]. Chem. J. Chinese Universities, 2021, 42(8): 2592. |
[11] | WANG Linlin, LI Lei, FENG Shengyu. Research Progress of Silicone Supramolecular Materials [J]. Chem. J. Chinese Universities, 2021, 42(7): 2111. |
[12] | XUE Linlin, LYU Ruijing, WANG Aoxuan, LUO Jiayan. Strategies Concerning Anode Modification in Rechargeable Magnesium Batteries [J]. Chem. J. Chinese Universities, 2021, 42(5): 1357. |
[13] | ZHU Zhengxin, ZHANG Xiang, WANG Mingming, CHEN Wei. Lithium Intercalation Compounds-Hydrogen Gas Batteries [J]. Chem. J. Chinese Universities, 2021, 42(5): 1610. |
[14] | LIU Tiefeng, ZHANG Ben, SHENG Ouwei, NAI Jianwei, WANG Yao, LIU Yujing, TAO Xinyong. Research Progress of the Binders for the Silicon Anode [J]. Chem. J. Chinese Universities, 2021, 42(5): 1446. |
[15] | WANG Zengqiang, SUN Yiling, QIAN Zhengfang, WANG Renheng. Advances in Lithium Metal Batteries Based on Surface Interface Reaction and Optimization [J]. Chem. J. Chinese Universities, 2021, 42(4): 1017. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||