Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (4): 1225.doi: 10.7503/cjcu20200716
• Review • Previous Articles Next Articles
BA Zhichen1, LIANG Daxin1(), XIE Yanjun2(
)
Received:
2020-09-27
Online:
2021-04-10
Published:
2021-03-09
Contact:
LIANG Daxin
E-mail:daxin.liang@nefu.edu.cn;yxie@nefu.edu.cn
Supported by:
CLC Number:
TrendMD:
BA Zhichen, LIANG Daxin, XIE Yanjun. Progress of MXenes Composites: Interface Modification and Structure Design[J]. Chem. J. Chinese Universities, 2021, 42(4): 1225.
Etching method | Etchant | Etching temperature/℃ | Etching method | Etchant | Etching temperature/℃ |
---|---|---|---|---|---|
Acid with fluorine | HF | Room temperature(RT)—55 | Hydrothermal | NaOH | 270 |
H2O2+HF | 40 | NaBF4, HCl | 180 | ||
HCl+LiF | 35—55 | Electrochemical | NH4Cl/TMAOH | RT | |
HCl+(Na, K, NH4F) | 30—60 | HCl | RT | ||
NH4HF2 | RT | Lewis acid | ZnCl2, CuCl2, …… | 550 | |
Molten salts | LiF+NaF+KF | 550 |
Etching method | Etchant | Etching temperature/℃ | Etching method | Etchant | Etching temperature/℃ |
---|---|---|---|---|---|
Acid with fluorine | HF | Room temperature(RT)—55 | Hydrothermal | NaOH | 270 |
H2O2+HF | 40 | NaBF4, HCl | 180 | ||
HCl+LiF | 35—55 | Electrochemical | NH4Cl/TMAOH | RT | |
HCl+(Na, K, NH4F) | 30—60 | HCl | RT | ||
NH4HF2 | RT | Lewis acid | ZnCl2, CuCl2, …… | 550 | |
Molten salts | LiF+NaF+KF | 550 |
1 | Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306(5696), 666—669 |
2 | Naguib M., Mashtalir O., Carle V., Lu J., Huitman L., Gogotsi Y., Barsoum M. W., ACS Nano, 2012, 6(2), 1322—1331 |
3 | Naguib M., Mochalin V. N., Barsoum M. W., Gogotsi Y., Adv. Mater., 2014, 26(7), 992—1005 |
4 | Wang D., Li F., Lian R., Xu J., Kan D., Liu Y., Chen G., Gogotsi Y., Wei Y., ACS Nano, 2019, 13(10), 11078—11086 |
5 | Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M. W., Adv. Mater., 2011, 23(37), 4248—4253 |
6 | M. Ghidiu, Lukatskaya M. R., Zhao M. Q., Gogotsi Y., Barsoum M. W., Nature, 2014, 516(7529), 78—81 |
7 | Urbankowski P., Anasori B., Makaryan T., Er D., Kota S., Walsh P. L., Zhao M., Shenoy V. B., Barsoum M. W., Gogotsi Y., Nanoscale, 2016, 8(22), 11385—11391 |
8 | Li T., Yao L., Liu Q., Gu J., Luo R., Li J., Yan X., Wang W., Liu P., Chen B., Zhang W., Abbas W., Naz R., Zhang D., Angew. Chem. Int. Ed., 2018, 57(21), 6115—6119 |
9 | Sun W., Shah S. A., Chen Y., Tan Z., Gao H., Habib T., Radovic M., Green M. J., J. Mater. Chem. A, 2017, 5(41), 21663—21668 |
10 | Soundiraraju B., George B. K., ACS Nano, 2017, 11(9), 8892—8900 |
11 | Li Y., Shao H., Lin Z., Lu J., Liu L., Duployer B., Persson P., Eklund P., Hultman L., Li M., Chen K., Zha X., Du S., Rozier P., Chai Z., Raymundo E., Taberna P., Simon P., Huang Q., Nat. Mater., 2020, 19, 894—899 |
12 | Verger L., Natu V., Carey M., Barsoum M. W., Trends in Chemistry, 2019, 1(7), 656—669 |
13 | Zhou B., Zhang Z., Li Y., Han G., Feng Y., Wang B., Zhang D., Ma J., Liu C., ACS Appl. Mater. Interfaces, 2020, 12(4), 4895—4905 |
14 | Li X. X., Ma Y., Shen P. Z., Zhang C. K., Yan J. F., Xia Y. B., Luo S. J., Gao Y. H., ChemElectroChem, 2020, 7(3), 821—829 |
15 | Xie Y., Kent P. R. C., Phys. Rev. B, 2013, 87(23), 235441 |
16 | Enyashin A. N., Ivanovskii A. L., J. Solid State Chem., 2013, 207, 42—48 |
17 | Khazaei M., Arai M., Sasaki T., Estili M., Sakka Y., Sci. Technol. Adv. Mater., 2014, 15(1), 014208 |
18 | Gao Y. J., Cao Y. Y., Gu Y. B., Zhuo H., Zhuang G. L., Deng S. W., Zhong X., Wei Z. Z., Chen J. H., Pan X., Wang J. G., Appl. Surf. Sci., 2019, 465, 911—918 |
19 | Liu P., Ding W. J., Liu J., Shen L. L., Jiang F. X., Liu P. P., Zhu Z. Y., Zhang G., Liu C. C., Xu J. K., J. Alloys Compd., 2020, 829, 154634 |
20 | Qi X., Chen X., Peng S. K., Wang J. X., Wang N., Yan S.J., J. Mater. Eng., 2019, 12, 10—20(齐新, 陈翔, 彭思侃, 王继贤, 王楠, 燕绍九. 材料工程, 2019, 12, 10—20) |
21 | Xu X. D, Li Z. D., Li L. S., Wang J., Adv. Funct. Mater., 2020, 30(47), 2000712 |
22 | Jiang X., Kuklin A., Baev A., Ge Y., Ågren H., Zhang H., Prasad P., Phys. Rep., 2020, 848, 1—58 |
23 | Khazaei M., Arai M., Sasaki T., Chung C., Venkataramanan N., Estili M., Kawazoe Y., Adv. Funct. Mater., 2013, 23(17), 2185—2192 |
24 | Yang J., Luo X., Zhang S., Chen L., Phys. Chem. Chem. Phys., 2016, 18(18), 12914—12919 |
25 | Li J. B., Zhang Q., Yan L., Wu G. R., Hu M. J., Lin X. B., Yuan K. J., Yang X. M., Adv. Mater. Interfaces, 2019, 6(23), 1901461 |
26 | Li J., Yuan X. T., Lin C., Yang Y. Q., Xu L., Du X., Xie J. L., Lin J. H., Sun J. L., Adv. Energy Mater., 2017, 7(15), 1602725 |
27 | Guan Y. X., Zhang M. M., Qin J., Ma X. X., Li C., Tang J. L., J. Phys. Chem. C, 2020, 124(25), 13664—13671 |
28 | Agresti A., Pazniak A., Pescetelli S., Di Vito A., Rossi D., Pecchia A., Auf der Maur M., Liedl A., Larciprete R., Kuznetsov D. V., Saranin D., Di Carlo A., Nat. Mater., 2019, 18(11), 1228—1234 |
29 | Lu C. J., Yang L., Yan B. Z., Sun L. B., Zhang P. G., Zhang W., Sun Z. M., Adv. Funct. Mater., 2020, 30(47), 2000852 |
30 | Kim D., Ko T. Y., Kim H., Lee G. H., Cho S., Koo C. M., ACS Nano, 2019, 13(12), 13818—13828 |
31 | Zhang L. X., Su W. T., Shu H. B., Lü T., Fu L., Song K. X., Huang X. W., Yu J. H., Lin C. T., Tang Y. P., Ceram. Int., 2019, 45(9), 11468—11474 |
32 | Liu Y. T., Zhang P., Sun N., Anasori B., Zhu Q. Z., Liu H., Gogotsi Y., Xu B., Adv. Mater., 2018, 30(23), e1707334 |
33 | Riazi H., Anayee M., Hantanasirisakul K., Shamsabadi A. A., Anasori B., Gogotsi Y., Soroush M., Adv. Mater. Interfaces, 2020, 7(6), 1902008 |
34 | Fang Y. Z., Lian R. Q., Li H. P., Zhang Y., Gong Z., Zhu K., Ye K., Yan J., Wang G. L., Gao Y., Wei Y. J., Cao D. X., ACS Nano, 2020, 14(7), 8744—8753 |
35 | Fang Y., Zhang Y., Zhu K., Lian R., Gao Y., Yin J., Ye K., Cheng K., Yan J., Wang G., Wei Y., Cao D., ACS Nano, 2019, 13(12), 14319—14328 |
36 | Sun C., Shi X., Zhang Y., Liang J., Qu J., Lai C., ACS Nano, 2020, 14(1), 1176—1184 |
37 | Wang J. T., Zhai P. F., Zhao T. K., Li M. J., Yang Z. H., Zhang H. Q., Huang J. J., Electrochimica Acta, 2019, 320, 134558 |
38 | Zhang F., Guo X., Xiong P., Zhang J. Q., Song J. J., Yan K., Gao X. C., Liu H., Wang G. X., Adv. Energy Mater., 2020, 10(20), 2000446 |
39 | Wang X., Wang J., Qin J., Xie X., Yang R., Cao M., ACS Appl. Mater. Interfaces, 2020, 12(35), 39181—39194 |
40 | Zhao R., Di H., Hui X., Zhao D., Wang R., Wang C., Yin L., Energy Environ. Sci., 2020, 13(1), 246—257 |
41 | Zhao R., Di H., Wang C., Hui X., Zhao D., Wang R., Zhang L., Yin L., ACS Nano, 2020, 14(10), 13938—13951 |
42 | Yang L., Dall'Agnese C. X., Dall'Agnese Y., Chen G., Gao Y., Sanehira Y., Jena A. K., Wang X. F., Gogotsi Y., Miyasaka T., Adv. Funct. Mater., 2019, 29(46), 1905694 |
43 | Wang H. B., Zhang J. F., Wu Y. P., Huang H. J., Jiang Q. G., J. Phys. Chem. Solids, 2018, 115, 172—179 |
44 | Feng Y. F., Deng Q. H., Peng C., Wu Q., Ceram. Int., 2019, 45(6), 7923—7930 |
45 | Aakyiir M., Yu H. M., Araby S., Wang R. Y., Michelmore A., Meng Q. S., Losic D., Choudhury N. R., Ma J., Chem. Eng. J., 2020, 397, 125439 |
46 | An H. S., Habib T., Shah S., Gao H. L., Radovic M., Green M. J., Lutkenhaus J. L., Sci. Adv., 2018, 4(3), eaaq0118 |
47 | Zhu X. L., Liu B. C., Hou H. J., Huang Z. Y., Zeinu K. M., Huang L., Yuan X. Q., Guo D. B., Hu J. P., Yang J. K., Electrochim. Acta, 2017, 248, 46—57 |
48 | Sun W. J., Zhao Y. Y., Cheng X. F., He J. H., Lu J. M., ACS Appl. Mater. Interfaces, 2020, 12(8), 9865—9871 |
49 | Li X., You W., Wang L., Liu J., Wu Z., Pei K., Li Y., Che R., ACS Appl. Mater. Interfaces, 2019, 11(47), 44536—44544 |
50 | Zhang X., Wang H. H., Hu R., Huang C. Y., Zhong W. J., Pan L. M., Feng Y. B., Qiu T., Zhang C. F., Yang J., Appl. Surf. Sci., 2019, 484, 383—391 |
51 | Iqbal A., Shahzad F., Hantanasirisakul K., KIm M., Kwon J., Hong J., Kim H., Kim D., Gogotsi Y., Koo C. M., Science, 2020, 369, 446—450 |
52 | Li J. B., Chi Z., Qin R. Z., Yan L., Lin X. B., Hu M. J., Shan G. C., Chen H. L., Weng Y. X., J. Phys. Chem. C, 2020, 124(19), 10306—10314 |
53 | Zhao J. Q., Yang Y. W., Yang C. H., Tian Y. P., Han Y., Liu J., Yin X. T., Que W. X., J. Mater. Chem. A, 2018, 6(33), 16196—16204 |
54 | Liu G., Zou J., Tang Q., Yang X., Zhang Y., Zhang Q., Huang W., Chen P., Shao J., Dong X., ACS Appl. Mater. Interfaces, 2017, 9(46), 40077—40086 |
55 | Bai L., Yi W., Sun T., Tian Y., Zhang P., Si J., Hou X., Hou J., J. Mater. Chem. B, 2020, 8(30), 6402—6417 |
56 | Mu W. J., Du S. Z., Yu Q. H, Li X. L., Wei H. Y., Yang Y. C., Dalton Trans., 2018, 47(25), 8375—8381 |
57 | Sliozberg Y., Andzelm J., Hatter C. B., Anasori B., Gogotsi Y., Hall A., Compos. Sci. Technol., 2020, 192, 108124 |
58 | Liu L., Ying G., Hu C., Zhang K., Ma F., Su L., Zhang C., Wang C., ACS Appl. Nano Mater., 2019, 2(9), 5553—5562 |
59 | Zhao S., Li L. L., Zhang H. B., Qian B. Q., Luo J. Q., Deng Z. M., Shi S. W., Russell T. P., Yu Z. Z., Mater. Chem. Front., 2020, 4(3), 910—917 |
60 | Paul P., Chakraborty P., Das T., Nafday D., Saha⁃Dasgupta T., Phys. Rev. B, 2017, 96(3), 035435 |
61 | Petukhov D. I., Chumakov A. P., Kan A. S., Lebedev V. A., Eliseev A. A., Konovalov O. V., Eliseev A. A., Nanoscale, 2019, 11(20), 9980—9986 |
62 | Feng L., Zha X., Luo K., Huang Q., He J., Liu Y., Deng W., Du S., J. Electron. Mater., 2017, 46, 2460—2466 |
63 | Sun H. L., Li Y. F., Yi R. H., Wang R. C., Zhou A. J., Sun Y. M., Energy Storage Sci. Technol., 2019, 8(1), 130—137(孙贺雷, 李云飞, 易荣华, 王若冲, 周爱军, 孙义民. 储能科学与技术, 2019, 8(1), 130—137) |
64 | Yang X., Zhang Y., Fu Z., Lu Z., Zhang X., Wang Y., Yang Z., Wu R., ACS Appl. Mater. Interfaces, 2020, 12(25), 28206—28216 |
65 | Tang J., Mathis T., Kurra N., Sarycheva A., Xiao X., Hedhili M., Jiang Q., Alshareef H., Xu B., Pan F., Gogotai Y., Angew. Chem. Int. Ed., 2019, 58(49), 17849—17855 |
66 | Xu Q., Ding L., Wen Y. Y., Yang W. J., Zhou H. J., Chen X. Z., Street J., Zhou A., Ong W. J., Li N., J. Mater. Chem. C, 2018, 6(24), 6360—6369 |
67 | Rafieerad A., Yan W., Sequiera G. L., Sareen N., Abu⁃El⁃Rub E., Moudgil M., Dhingra S., Adv. Healthc. Mater., 2019, 8(16), e1900569 |
68 | Tang R., Zhou S., Li C., Chen R., Zhang L., Zhang Z., Yin L., Adv. Funct. Mater., 2020, 30(19), 2000637 |
69 | Pandey P., Sengupta A., Parmar S., Bansode U., Gosavi S., Swarnkar A., Muduli S., Mohite A., Ogale S., ACS Appl.Nano Mater., 2020, 3(4), 3305—3314 |
70 | Gu M., Dai Z., Yan X., Ma J., Niu Y., Lan W., Wang X., Xu Q., J. Appl. Toxicol., 2020, 1—10 |
71 | Wang H., Zhao R., Hu H., Fan X., Zhang D., Wang D., ACS Appl. Mater. Interfaces, 2020, 12(36), 40176—40185 |
72 | Chen X., Xu W., Ding N., Ji Y., Pan J., Zhou D., Wu Y., Chen C., Song H., Adv. Funct. Mater., 2020, 30(30), 2003295 |
73 | Shahzad A., Nawaz M., Moztahida M., Jang J., Tahir K., Kim J., Lim Y., Vassiliadis V. S., Woo S. H., Lee D. S., Chem. Eng. J., 2019, 368, 400—408 |
74 | Zhao M. Q., Xie X., Ren C. E., Makaryan T., Anasori B., Wang G., Gogotsi Y., Adv. Mater., 2017, 29(37), 1702410 |
75 | Han M., Yin X., Hantanasirisakul K., Li X., Lqbal A., Hatter C., Anasori B., Koo C., Soda Y., Zhang L., Cheng L., Gogotsi Y., Adv. Opt. Mater., 2019, 7(10), 1900267 |
76 | Liao H., Guo X., Wan P., Yu G., Adv. Funct. Mater., 2019, 29(39), 1904507 |
77 | Gao Q., Sun W. W., Ilani-Kashkouli P., Tselev A., P. R. C. Kent, Kabengi N., M. Naguib, Alhabeb M., Tsai W. Y., Baddorf A. P., Huang J. S., Jesse S., Y. Gogotsi, Balke N., Energy Environ. Sci., 2020, 13(8), 2549—2558 |
78 | Zheng W., Sun Z. M., Zhang P. G., Tian W. B., Wang Y., Zhang Y. M., Materials Reports, 2017, 31(9), 1—14(郑伟, 孙正明, 张培根, 田无边, 王英, 张亚梅. 材料导报, 2017, 31(9), 1—14) |
79 | Luo J., Zhang W., Yuan H., Jin C., Zhang L., Huang H., Liang C., Xia Y., Zhang J., Gan Y., Tao X., ACS Nano, 2017, 11(3), 2459—2469 |
80 | Li J., Wang H., Xiao X., Energy Environ. Mater., 2020, 3(3), 306—322 |
[1] | LI Shurong, WANG Lin, CHEN Yuzhen, JIANG Hailong. Research Progress of Metal⁃organic Frameworks on Liquid Phase Catalytic Chemical Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210575. |
[2] | ZOU Junyan, ZHANG Yanyan, CHEN Shi, SHAO Huaiyu, TANG Yuxin. Recent Development on Surface-interface Chemistry of All-solid-state Lithium Batteries [J]. Chem. J. Chinese Universities, 2021, 42(4): 1005. |
[3] | ZHANG Shuting, AN Qi. Progress on the Design and Fabrication of High Performance Piezoelectric Flexible Materials Based on Polyvinylidene Fluoride [J]. Chem. J. Chinese Universities, 2021, 42(4): 1114. |
[4] | HUANG Dapeng, YU Haohai, ZHANG Huaijin. Optical Properties and Related Research Progress of MXenes [J]. Chem. J. Chinese Universities, 2021, 42(2): 397. |
[5] | ZHAN Shuhui, ZHAO Yasong, YANG Nailiang, WANG Dan. Pore Structure of Graphdiyne: Design, Synthesis and Application [J]. Chem. J. Chinese Universities, 2021, 42(2): 333. |
[6] | HAN Muyao, ZHAO Lina, SUN Jie. Advances in Silicon and Silicon-based Anode Materials [J]. Chem. J. Chinese Universities, 2021, 42(12): 3547. |
[7] | NING Qiuyang, FENG Wei, WU Guoguang. Preparation of InN-In2O3 Nanocomposite with Bottle-shaped Structure and Its Enhanced Formaldehyde Gas Sensitivity [J]. Chem. J. Chinese Universities, 2020, 41(12): 2804. |
[8] | LI Ze, WANG Jianjiang, GAO Haitao, ZHAO Fang. Fabrication and Microwave Absorption Mechanism of PCIP/CoFe2O4/PANI Composites [J]. Chem. J. Chinese Universities, 2019, 40(8): 1784. |
[9] | YIN Yanhong,LI Ke,DONG Hongyu,JIN Cheng,XIAO Xinglu,GAO Yicong,YANG Shuting. Performance of Ru/graphene/carbon Nanotube Composites with Three-dimensional Network Structure as Positive Electrode Catalysts for Lithium Oxygen Batteries† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1271. |
[10] | CHEN Yaoyan,ZHAO Xin,WANG Zhe,DONG Jie,ZHANG Qinghua. Effects of Preparation Conditions on the Morphologies, Structures and Electrochemical Properties of MXene† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1249. |
[11] | ZHANG Jianhui,ZHOU Jinya,LIN Haibo,LI Zhan,FANG Qianrong,XUE Ming,QIU Shilun. MXene-Coated Mesh Membrane with Underwater Superoleophobicity for High-efficiency Oil-water Separation† [J]. Chem. J. Chinese Universities, 2019, 40(4): 624. |
[12] | LÜ Tong,ZHANG Enshuang,YUAN Yin,FAN Zhimin,MA Xiangyu,CHENG Zhongjun,LIU Yuyan,GONG Yuanxun,ZHAO Hongjie. Preparation of Large-size Single Layer MXene with Low Defect and Electromagnetic Shielding Performance of MXene Film [J]. Chem. J. Chinese Universities, 2019, 40(10): 2059. |
[13] | WANG Meilin, LIU Yudong, LIU Xiaoli, LI Zhiying, LIU Fengqi. Nonisothermal Crystallization Kinetics of ABS/PET/PETG Alloy† [J]. Chem. J. Chinese Universities, 2018, 39(6): 1290. |
[14] | ZHANG Long, HOU Jieqiong, QIU Hu, DUAN Wenjing, WANG Xiaorui, WAN Xiaona, DU Xueyan. Fabrication and Microwave Absorption Performances of EG-PANI-Fe3O4 Composites† [J]. Chem. J. Chinese Universities, 2017, 38(12): 2352. |
[15] | GUO Yajun, ZHANG Long, HOU Jieqiong, MA Yongbo, QIU Hu, ZHANG Wenjuan, DU Xueyan. Preparation and Wave-absorbing Performance of PANI/Fe3O4/CB Hollow Structured Composites† [J]. Chem. J. Chinese Universities, 2016, 37(6): 1202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||