Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (2): 333.doi: 10.7503/cjcu20200663
• Review • Previous Articles Next Articles
ZHAN Shuhui1,2, ZHAO Yasong1, YANG Nailiang1,2(), WANG Dan1,2(
)
Received:
2020-09-08
Online:
2021-02-10
Published:
2020-12-30
Contact:
YANG Nailiang
E-mail:nlyang@ipe.ac.cn;danwang@ipe.ac.cn
Supported by:
CLC Number:
TrendMD:
ZHAN Shuhui, ZHAO Yasong, YANG Nailiang, WANG Dan. Pore Structure of Graphdiyne: Design, Synthesis and Application[J]. Chem. J. Chinese Universities, 2021, 42(2): 333.
Fig.1 Classification of GDY’s pore structuresMolecular pore: (A) fluorine-substituted GDY[11], Copyright 2018, RSC Publishing; (B) GDY; piled pore: (C) GDY nanowall[13], Copyright 2015, ACS Publishing; (D) GDY nanotube[14], Copyright 2011, ACS Publishing; (E) 3D hierarchical structured GDY[15], Copyright 2017, ACS Publishing; (F) 3D diatomite shaped GDY[12], Copyright 2018, Wiley Publishing.
Fig.2 Schematics of GDY’s pore structures designThe structures can be manipulated by adjusting monomers, catalysts, templates and solvent for target-applications such as water treatment, lithium-ion batteries, catalysis, etc.
Fig.3 Application?oriented design of GDYPerformance required in the application and its corresponding structure design strategies[12,15,22—24]. Copyright 2018, Wiley Publishing; Copyright 2017, ACS Publishing; Copyright 2013, IOP Publishing; Copyright 2018, Wiley Publishing; Copyright 2019, ACS Publishing.
Monomer | Structure | Size(diameter)/nm | Condition | Ref. |
---|---|---|---|---|
![]() | ![]() | 0.54 | Copper foil, pyridine | [ |
![]() | ![]() | 0.59 | Copper foil, pyridine | [ |
![]() | ![]() | 1.3 | Copper foil, pyridine | [ |
Monomer | Structure | Size(diameter)/nm | Conditions | Ref. |
![]() | ![]() | 1.6 | Copper foil, pyridine | [ |
![]() | ![]() | 1.63 | Copper foil, pyridine | [ |
![]() | ![]() | 1.66 | Copper foil, CH2Cl2, TMEDA | [ |
![]() | ![]() | 1.5 | Copper foil, pyridine | [ |
Table 1 Molecular pore structures and sizes of GDY prepared by different monomers
Monomer | Structure | Size(diameter)/nm | Condition | Ref. |
---|---|---|---|---|
![]() | ![]() | 0.54 | Copper foil, pyridine | [ |
![]() | ![]() | 0.59 | Copper foil, pyridine | [ |
![]() | ![]() | 1.3 | Copper foil, pyridine | [ |
Monomer | Structure | Size(diameter)/nm | Conditions | Ref. |
![]() | ![]() | 1.6 | Copper foil, pyridine | [ |
![]() | ![]() | 1.63 | Copper foil, pyridine | [ |
![]() | ![]() | 1.66 | Copper foil, CH2Cl2, TMEDA | [ |
![]() | ![]() | 1.5 | Copper foil, pyridine | [ |
Fig.5 Growth of GDY on gas/liquid interface(A)[40], solid(graphene)/liquid(solvent) interface(B)[41], silver through CVD method(C)[42] and liquid/liquid interface(D)[40](A, D) Copyright 2017, ACS Publishing; (B) Copyright 2018, American Association for the Advancement of Science; (C) Copyright 2017,Wiley Publishing.
Fig.6 Structures(A—C) and pore electron density isosurfaces(D—F) of GDY?H(A, D), GDY?F(B, E) and GDY?O(C, F) monolayers[54]Gray sphere: C; white sphere: H; blue sphere: F; red sphere: O. Copyright 2017, Elsevier Publishing.
Fig.7 Structures of α?garphyne, β?garphyne and γ?garphyne(A), schematic diagram of graphyne used for seawater desalination(B), performance comparison between graphyne and commercial reverse osmosis membranes(C) and single?pore flow rates of α?garphyne, β?garphyne and graphyne?3 at different pressures(D)[22]Copyright 2013, IOP Publishing.
Fig.8 Coordination number of Cu atoms and the positions of intermediates vary with molecular different pore sizes(A) and onset potentials of the products of CO2 reduction on Cu?Graphynes(B)[60]Copyright 2020, RSC Publishing.
Fig.9 Storage sites of lithium ions in Cl?substituted GDY(gray sphere: C, green sphere: Cl, orange sphere: Li)(A), the cycling performance of Cl?substituted GDY in lithium batteries(B)[26], storage sites of lithium ion in F?substituted GDY(gray sphere: C, yellow sphere: F, purple sphere: Li)(C) and cycling performance of F?substituted GDY in lithium batteries(D)[11](A, B) Copyright 2017, Wiley Publishing; (C, D) Copyright 2018, RSC Publishing.
Fig.10 Three?dimensional GDY nanosheets on copper foil substrates prepared by a modified Glaser?Hay coupling reaction(A), the cycle performance of sodium batteries based on 3D GDY nanosheets at the current density of 1 A/g(B)[69], schematic for weaving the network of ultrathin GDY nanosheets on the Si anode(C), SEM images of ultrathin GDY nanosheets on the Si anode(D) and the performance of the as‐ prepared sample at a high current density of 2 A/g(E)[23](A, B) Copyright 2017, ACS Publishing; (C—E) Copyright 2018, Wiley Publishing.
Fig.11 3D copper nanowires@GDY(A), lithium deposited in the pores of 3D copper nanowires@GDY(B) and stability of lithium metal batteries based on 3D copper nanowires@GDY(C)[24]Copyright 2019, ACS Publishing.
Fig.12 SEM images of 3D GDY at different scales(A—C), water evaporation rate(D), evaporation stability(E) and schematic diagram of promoting light absorption(F)[15]Copyright 2017, ACS Publishing.
Fig.13 SEM images of 3D diatomite shaped GDY(A, B), schematic illustration of 4?nitrophenol reduction catalyzed by Rh@3DGDY(C), TEM image of Rh@3DGDY(D) and time?dependent UV?Vis absorption spectra recorded during the 4?nitrophenol reduction catalyzed by Rh@3DGDY(E)[12]Copyright 2018, Wiley Publishing.
1 | Zhou J. Y., Zhang J., Liu Z. F., Acta Phys.⁃Chim. Sin., 2018, 34(9), 977—991 |
2 | Chen M. Q., Guan R. N., Yang S. F., Adv. Sci., 2019, 6, 1800941 |
3 | Liu L. Q., Ma W. J., Zhang Z., Small, 2011, 7(11), 1504—1520 |
4 | Zeng M., Wang W. L., Bai X. D., Chin. Phys. B, 2013, 098105 |
5 | Li G. X., Li Y. L., Liu H. B., Guo Y. B., Li Y. J., Zhu D. B., Chem. Commun., 2010, 46, 3256—3258 |
6 | Liu M. H., Li Y. L., Acta Phys.⁃Chim. Sin., 2018, 34(9), 959—960 |
7 | Gao X., Liu H. B., Wang D., Zhang J., Chem. Soc. Rev., 2019, 48, 908—936 |
8 | Janas D., Liszka B., Mater. Chem. Front., 2018, 2(1), 22—35 |
9 | Dai L. M., Mau A. W. H., Adv. Mater., 2001, 13(12/13), 899—913 |
10 | Yang N. L., Zhai J., Wang D., Chen Y. S., Jiang L., ACS Nano, 2010, 4, 887—894 |
11 | He J. J., Wang N., Yang Z., Shen X. Y., Wang K., Huang C. S., Yi Y. P., Tu Z. Y., Li Y. L., Energy Environ. Sci., 2018, 11, 2893—2903 |
12 | Li J. Q., Xu J., Xie Z. Q., Gao X., Zhou J. Y., Xiong Y., Chen C. G., Zhang J., Liu Z. F., Adv. Mater., 2018, 30, 1800548 |
13 | Zhou J. Y., Gao X., Liu R., Xie Z. Q., Yang J., Zhang S. Q., Zhang G. M., Liu H. B., Li Y. L., Zhang J., Liu Z. F., J. Am. Chem. Soc., 2015, 137, 7596—7599 |
14 | Li G. X., Li Y. L., Qian X. M., Liu H. B., Lin H. W., Chen N., Li Y. J., J. Phys. Chem. C, 2011, 115, 2611—2615 |
15 | Gao X., Ren H. Y., Zhou J. Y., Du R., Yin C., Liu R., Peng H. L., Tong L. M., Liu Z. F., Zhang J., Chem. Mater., 2017, 29, 5777—5781 |
16 | Jang B., Koo J., Park M., Lee H., Nam J., Kwon Y., Lee H., Appl. Phys. Lett., 2013, 103, 263904 |
17 | Wang F., Zuo Z. C., Li L., Li K., He F., Jiang Z. Q., Li Y. L., Angew. Chem. Int. Ed., 2019, 58, 15010—15015 |
18 | Zhang L. Y., Wu C., Ding X. D., Fang Y., Sun J., Phys. Chem. Chem. Phys., 2018, 20, 18192—18199 |
19 | Bartolomei M., Carmona⁃Novill E., Hernandez M. I., Campos⁃Martinez J., Pirani F., Giorgi G., J. Phys. Chem. C, 2014, 118, 29966—29972 |
20 | He J. J., Wang N., Cui Z. L., Du H. P., Fu L., Huang C. S., Yang Z., Shen X. Y., Yi Y. P., Tu Z. Y., Li Y. L., Nat. Commun., 2017, 8, 1172 |
21 | Yu H. D., Xue Y. R., Hui L., Zhang C., Li Y. J., Zuo Z. C., Zhao Y. J., Li Z. B., Li Y. L., Adv. Mater., 2018, 1707082 |
22 | Xue M. M., Qiu H., Guo W. L., Nanotechnology, 2013, 24, 505720 |
23 | Shang H., Zuo Z. C., Yu L., Wang F., He F., Li Y. L., Adv. Mater., 2018, 30, 1801459 |
24 | Shang H., Zuo Z. C., Li Y. L., ACS Appl. Mater. Interfaces, 2019, 11, 17678—17685 |
25 | Wang N., Li X. D., Tu Z. Y., Zhao F. H., He J. J., Guan Z. Y., Huang C. S., Yi Y. P., Li Y. L., Angew. Chem. Int. Ed., 2018, 57, 3968—3973 |
26 | Wang N., He J. J., Tu Z. Y., Yang Z., Zhao F. H., Li X. D., Huang C. S., Wang K., Jiu T. G., Yi Y. P., Li Y. L., Angew. Chem. Int. Ed., 2017, 56, 10740—10745 |
27 | Shang H., Zuo Z. C., Zheng H. Y., Li K., Tu Z. Y., Yi Y. P., Liu H. B., Li Y. J., Li Y. L., Nano Energy, 2017, 44, 144—154 |
28 | Sonoda M., Inaba A., Itahashi K., Tobe Y., Org. Lett., 2001, 3, 2419 |
29 | Anthony J. E., Khan S. I., Rubin Y., Tetrahedron Lett., 1997, 38, 3499—3502 |
30 | Shi W., Lei A.W., Tetrahedron Lett., 2014, 55, 17, 2763—2772 |
31 | Sindhu K. S., Anilkumar G., RSC Adv., 2014, 4, 27867—27887 |
32 | Si H. Y., Deng Q. X., Chen L. C., Wang L., Liu X. Y., Wu W. S., Zhang Y. H., Zhou J. M., Zhang H. L., J. Alloys Compd., 2019, 794, 261—267 |
33 | Glaser C., Ber. Dtsch. Chem. Ges., 1869, 2, 422—424 |
34 | Eglinton G., Galbralth A. R., Soc. Chemical Industry, 1956, 28, 737—738 |
35 | Hay A. S., J. Org. Chem., 1962, 27(9), 3320—3321 |
36 | Vilhelmsen M. H., Jensen J., Tortzen C. G., Nielsen M. B., Eur. J. Org. Chem., 2013, 701—711 |
37 | Tang J. Y., Jiang H. F., Deng G. H., Chin. J. Org. Chem., 2005, 25, 1503 |
38 | Gao X., Li J., Du R., Zhou J. Y., Huang M. Y., Liu R., Li J., Xie Z. Q., Wu L. Z., Liu Z. F., Zhang J., Adv. Mater., 2017, 1605308 |
39 | Zhang S. C., Chen Y., Kang Z., Wu P. W., Wu J., Zhang Z., Liao Q. L., Zhang J., Zhang Y., ACS Appl. Mater. Interfaces, 2019, 11, 2745—2749 |
40 | Matsuoka R., Sakamoto R., Hoshiko K., Sasaki S., Masunaga H., Nagashio K., Nishihara H., J. Am. Chem. Soc., 2017, 139, 3145—3152 |
41 | Gao X., Zhu Y. H., Yi D., Zhou J. Y., Zhang S. S., Yin C., Ding F., Zhang S. Q., Yi X. H., Wang J. Z., Tong L. M., Han Y., Liu Z. F., Zhang J., Sci. Adv., 2018, 4(7), eaat6378 |
42 | Liu R., Gao X., Zhou J. Y., Xu H., Li Z. Z., Zhang S. Q., Xie Z. Q., Zhang J., Liu Z. F., Adv. Mater., 2017, 29, 1604665 |
43 | Bieri M., Nguyen M. T., Groning O., Cai J. M., Treier M., Ait⁃Mansour K., Ruffieux P., Pignedoli C. A., Passerone D., Kastler M., Mullen K., Fasel R., J. Am. Chem. Soc., 2010, 132, 16669 |
44 | Yuan Q. H., Ding D., Nanoscale, 2014, 21, 12727—12731 |
45 | Huang C. S., Li Y. J., Wang N., Xue Y. R., Zuo Z. C., Liu H. B., Li Y. L., Chem. Rev., 2018, 118(16), 7744—7803 |
46 | Zhang T., Hou Y., Dzhagan V., Liao Z. Q., Chai G. L., Loffler M., Olianas D., Milani A., Xu S. Q., Tommasini M., Zahn D. R. T., Zheng Z. K., Zschech E., Jordan R., Feng X. L., Nat. Commun., 2018, 9, 1140 |
47 | van Gelderen L., Rothenberg G., Calderone V. R., Wilson K., Shiju N. R., Appl.Organometal. Chem., 2013, 27, 23—27 |
48 | Zhao Y. S., Wan J. W., Yao H. Y., Zhang L. J., Lin K. F., Wang L., Yang N. L., Liu D. B., Song L., Zhu J., Gu L., Liu L., Zhao H. J., Li Y. L., Wang D., Nat. Chem., 2018, 10(9), 924—931 |
49 | Domyati D., Latifi R., Tahsini L., J. Organomet. Chem., 2018, 860, 98—105 |
50 | Reichardt C., Solvents and Solvent Effects in Organic Chemistry, Third Edition, Wiley⁃VCH Verlag GmbH & Co. KGaA, Veinheim, 2003 |
51 | Peng J. B., Wu X. F., Angew. Chem. Int. Ed., 2018, 57, 1152—1160 |
52 | Kim S., Gamallo P., Vines F., Lee J. Y., Appl. Surf. Sci., 2020, 499, 143927 |
53 | Cranford S. W., Buehler M. J., Nanoscale, 2012, 4, 4587—4593 |
54 | Zhao L. M., Sang P. P., Guo S., Liu X. P., Li J., Zhu H. Y., Guo W. Y., Appl. Surf. Sci., 2017, 405, 455—464 |
55 | Xue Y. R., Huang B. L., Yi Y. P., Guo Y., Zuo Z. C., Li Y. J., Jia Z. Y., Liu H. B., Li Y. L., Nat. Commun., 2018, 9, 1460 |
56 | Hui L., Xue Y. R., Yu H. D., Zhang C., Huang B. L., Li Y. L., ChemPhysChem, 2020, 21, 1—6 |
57 | Zhai X. W., Yan H. X., Ge G. X., Yang J. M., Chen F., Liu X. Y., Yang D. Z., Li L. F., Zhang J. L., Appl. Surf. Sci., 2020, 506, 144941 |
58 | He T. W., Matta S. K., Will G., Du A. J., Small Methods, 2019, 9, 1800419 |
59 | Xu H. X., Cheng D. J., Cao D. P., Zeng X. C., Nat. Catal., 2018, 1, 632—632 |
60 | Ni Y. X., Miao L. C., Wang J. Q., Liu J. X., Yuan M. J., Chen J., Phys. Chem. Chem. Phys., 2020, 22, 1181—1186 |
61 | Xu Z. M., Lv X., Li J., Chen J. G., Liu Q. S., RSC Adv., 2016, 6, 25594—25600 |
62 | Shekar S. C., Swathi R. S., J. Phys. Chem. A, 2013, 117, 8632—8641 |
63 | Zhang S. L., He J. J., Zheng J., Huang C. S., Lv Q., Wang K., Wang N., Lan Z. G., J. Mater. Chem. A, 2017, 5, 2045—2051 |
64 | Fu G. T., Yan X. X., Chen Y. F., Xu L., Sun D. M., Lee J. M., Tang Y. W., Adv. Mater., 2018, 30, 1704609 |
65 | Zhao M. Q., Xie X. Q., Ren C. E., Makaryan T., Anasori B., Wang G. X., Gogotsi Y., Adv. Mater., 2017, 29, 1702410 |
66 | Song H. Q., Zhu Q., Zheng X. J., Chen X. G., J. Mater. Chem. A, 2015, 3, 10368—10377 |
67 | Qiu H. J., Du P., Hu K. L., Gao J. J., Li H. L., Liu P., Ina T., Ohara K., Ito Y., Chen M. W., Adv. Mater., 2019, 31, 1900843 |
68 | Qin J., Wang T. S., Liu D. Y., Liu E. Z., Zhao N. Q., Shi C. S., He F., Ma L. Y., He C. N., Adv. Mater., 2018, 30, 1704670 |
69 | Wang K., Wang N., He J. J., Yang Z., Shen X. Y., Huang C. S., ACS Appl. Mater. Interfaces, 2017, 9, 40604—40613 |
70 | Wei Y. Z., Wang J. Y., Yu R. B., Wan J. W., Wang D., Angew. Chem. Int. Ed.,2019, 58, 1422—1426 |
71 | Hu X. Z., Xu W. C., Zhou L., Tan Y. L., Wang Y., Zhu S. N., Zhu J., Adv. Mater., 2017, 29, 1604031 |
72 | Qiu B. C., Xing M. Y., Zhang J. L., Chem. Soc. Rev., 2018, 47, 2165—2216 |
73 | Gao X., Zhou J. Y., Du R., Xie Z. Q., Deng S. B., Liu R., Liu Z. F., Zhang J., Adv. Mater., 2016, 28, 168—173 |
74 | Liu R., Zhou J. Y., Li J. Q., Xie Z. Q., Li Z. Z., Zhang S. Q., Tong L. M., Zhang J., Liu Z. F., Adv. Electron. Mater., 2017, 3, 1700122 |
75 | Yin C., Li J. Q., Li T. R., Yu Y., Kong Y., Gao P., Peng H. L., Tong L. M., Zhang J., Adv. Funct. Mater., 2020, 2001396 |
76 | Yan H. L., Yu P., Han G. C., Zhang Q. H., Gu L., Yi Y. P., Liu H. B., Li Y. L., Mao L. Q., Angew. Chem. Int. Ed., 2018, 57, 1—6 |
[1] | CAO Shujie, LI Hongjun, GUAN Wenli, REN Mengtian, ZHOU Chuanzheng. Progress on the Stereocontrolled Synthesis of Phosphorothioate Oligonucleotides [J]. Chem. J. Chinese Universities, 2022, 43(Album-4): 20220304. |
[2] | YAO Qing, YU Zhiyong, HUANG Xiaoqing. Progress in Synthesis and Energy-related Electrocatalysis of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220323. |
[3] | WANG Ruyue, WEI Hehe, HUANG Kai, WU Hui. Freezing Synthesis for Single Atom Materials [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220428. |
[4] | WANG Xintian, LI Pan, CAO Yue, HONG Wenhao, GENG Zhongxuan, AN Zhiyang, WANG Haoyu, WANG Hua, SUN Bin, ZHU Wenlei, ZHOU Yang. Techno-economic Analysis and Industrial Application Prospects of Single-atom Materials in CO2 Catalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220347. |
[5] | JIN Ruiming, MU Xiaoqing, XU Yan. Bio-chemical Synthesis of Melanin Precursor—— 5,6-Dihydroxyindole(DHI) [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220134. |
[6] | WEI Chunhong, JIANG Qian, WANG Panpan, JIANG Chengfa, LIU Yuefeng. Atomic Scale Investigation of Pt Atoms/clusters Promoted Co-catalyzed Fischer-Tropsch Synthesis [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220074. |
[7] | ZHANG Xinxin, XU Di, WANG Yanqiu, HONG Xinlin, LIU Guoliang, YANG Hengquan. Effect of Mn Promoter on CuFe-based Catalysts for CO2 Hydrogenation to Higher Alcohols [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220187. |
[8] | ZHOU Zixuan, YANG Haiyan, SUN Yuhan, GAO Peng. Recent Progress in Heterogeneous Catalysts for the Hydrogenation of Carbon Dioxide to Methanol [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220235. |
[9] | LI Yidi, TIAN Xiaochun, LI Junpeng, CHEN Lixiang, ZHAO Feng. Electron Transfer on the Semiconductor-microbe Interface and Its Environmental Application [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220089. |
[10] | LU Cong, LI Zhenhua, LIU Jinlu, HUA Jia, LI Guanghua, SHI Zhan, FENG Shouhua. Synthesis, Structure and Fluorescence Detection Properties of a New Lanthanide Metal-Organic Framework Material [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220037. |
[11] | ZHUANG Jiahao, WANG Dingsheng. Current Advances and Future Challenges of Single-atom Catalysis [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220043. |
[12] | WONG Honho, LU Qiuyang, SUN Mingzi, HUANG Bolong. Rational Design of Graphdiyne-based Atomic Electrocatalysts: DFT and Self-validated Machine Learning [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220042. |
[13] | SHA Meng, XU Weiqing, WU Zhichao, GU Wenling, ZHU Chengzhou. Recent Advances in Single-atom Materials for Enzyme-like Catalysis and Biomedical Applications [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220077. |
[14] | CHEN Zhaoyang, XUE Yurui, LI Yuliang. Synthesis and Applications of Graphdiyne Based Zerovalent Atomic Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220063. |
[15] | FENG Li, SHAO Lanxing, LI Sijun, QUAN Wenxuan, ZHUANG Jinliang. Synthesis of Ultrathin Sm-MOF Nanosheets and Their Visible-light Induced Photodegradation of Mustard Simulant [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210867. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||