Chem. J. Chinese Universities ›› 2020, Vol. 41 ›› Issue (5): 909.doi: 10.7503/cjcu20190646
• Review • Previous Articles Next Articles
ZHAO Yu1,CAO Wanqing1,2,LIU Yang1,2,*()
Received:
2019-12-10
Online:
2020-05-10
Published:
2020-02-24
Contact:
Yang LIU
E-mail:yliu@nankai.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHAO Yu, CAO Wanqing, LIU Yang. Recent Advances in Polymeric Nano-sized Carrier Systems [J]. Chem. J. Chinese Universities, 2020, 41(5): 909.
Drug | Material | Stimuli-responsive condition | Application | Ref. | |||
---|---|---|---|---|---|---|---|
Doxorubicin | PEG-b-P(Lys/CA-DOX), PAE-b-P(Lys/CA-DOX) | pH | Cancer | [ | |||
Doxorubicin | DNA | pH | Cancer | [ | |||
Doxorubicin | PEG-b-PEYM | pH | Cancer | [ | |||
Doxorubicin | PLLA-PEG | pH | Cancer | [ | |||
Doxorubicin | PVA,m-dextran | pH | Cancer | [ | |||
Doxorubicin | PETMP-AU-PEG | pH | Cancer | [ | |||
Factor-related apoptosis-inducing ligand and Doxorubicin | m-HA | pH | Cancer | [ | |||
miRNA | AAm and APm | pH | Cancer | [ | |||
Doxorubicin, Loperamide | PLGA | pH | Cancer, central analgesic effects | [ | |||
Methotrexate | Chitosan | pH | Central nervous systems malignancies | [ | |||
Salvianolic acid B, tanshinone IIA and panax notoginsenoside | PLGA | pH | Cerebral ischemia reperfusion(I/R) injury | [ | |||
Doxorubicin | Gelatin and polydopamine | pH, enzyme, NIR | Cancer | [ | |||
Doxorubicin/indocyanine green | PLGA | NIR | Cancer | [ | |||
Levofloxacin | PVA/SA | UV | Antibiosis | [ | |||
Curcumin | PEG-pLys | ROS | Alzheimer’s disease | [ | |||
DNA | Poly(amino thioketal) | ROS | Cancer | [ | |||
Gemcitabine and anti-PD-L1 | PVA-TSPBA | ROS | Cancer | [ | |||
siRNA | PEG-b-P(Gu/Hb)/Ang-PEG-b-PGu | ROS | Cancer | [ | |||
MTO | PEG-PolyMTO | ROS | Cancer | [ | |||
Doxorubicin | poly(ether-urethane) | GSH | Cancer | [ | |||
Lira | PCGA-PEG-PCGA | Heat | Diabetes | [ | |||
Doxorubicin | PAMAM | Radiation | Cancer | [ | |||
Monoclonal Antibodies | 2-methacryloyloxyethyl phosphorylcholine | Enzyme | Cancer | [ | |||
Vancomycin | PEG-b-PP and PEG-b-PC | Enzyme | Antibiosis | [ | |||
Insulin | Chitosan/alginate and m-dextran | Glucose | Diabetes | [ | |||
Insulin | PEG-b-(PAA-co-PAAPBA) | Glucose | Diabetes | [ | |||
Insulin | P(NIPAM-Dex-PBA) | Glucose | Diabetes | [ | |||
KLVFF | PCL-b-PAE,PCL-b-PEG | — | Alzheimer’s disease | [ | |||
KLVFF and Beclin-1 | PEG | — | Alzheimer’s disease | [ | |||
Docetaxel | PEG-DMPE, DMPC,DHPC | — | Cancer | [ | |||
Rivastigmine | Poly(n-butylcyanoacrylate) | — | Alzheimer’s disease | [ | |||
p53 protein | AAm and N-azidodeca(ethylene glycol)ethylacrylamide | — | Cancer | [ | |||
Ciprofloxacin | PEG-b-cholesterol | — | Antibiosis | [ | |||
Ciprofloxacin | PLGA | — | Antibiosis | [ |
Drug | Material | Stimuli-responsive condition | Application | Ref. | |||
---|---|---|---|---|---|---|---|
Doxorubicin | PEG-b-P(Lys/CA-DOX), PAE-b-P(Lys/CA-DOX) | pH | Cancer | [ | |||
Doxorubicin | DNA | pH | Cancer | [ | |||
Doxorubicin | PEG-b-PEYM | pH | Cancer | [ | |||
Doxorubicin | PLLA-PEG | pH | Cancer | [ | |||
Doxorubicin | PVA,m-dextran | pH | Cancer | [ | |||
Doxorubicin | PETMP-AU-PEG | pH | Cancer | [ | |||
Factor-related apoptosis-inducing ligand and Doxorubicin | m-HA | pH | Cancer | [ | |||
miRNA | AAm and APm | pH | Cancer | [ | |||
Doxorubicin, Loperamide | PLGA | pH | Cancer, central analgesic effects | [ | |||
Methotrexate | Chitosan | pH | Central nervous systems malignancies | [ | |||
Salvianolic acid B, tanshinone IIA and panax notoginsenoside | PLGA | pH | Cerebral ischemia reperfusion(I/R) injury | [ | |||
Doxorubicin | Gelatin and polydopamine | pH, enzyme, NIR | Cancer | [ | |||
Doxorubicin/indocyanine green | PLGA | NIR | Cancer | [ | |||
Levofloxacin | PVA/SA | UV | Antibiosis | [ | |||
Curcumin | PEG-pLys | ROS | Alzheimer’s disease | [ | |||
DNA | Poly(amino thioketal) | ROS | Cancer | [ | |||
Gemcitabine and anti-PD-L1 | PVA-TSPBA | ROS | Cancer | [ | |||
siRNA | PEG-b-P(Gu/Hb)/Ang-PEG-b-PGu | ROS | Cancer | [ | |||
MTO | PEG-PolyMTO | ROS | Cancer | [ | |||
Doxorubicin | poly(ether-urethane) | GSH | Cancer | [ | |||
Lira | PCGA-PEG-PCGA | Heat | Diabetes | [ | |||
Doxorubicin | PAMAM | Radiation | Cancer | [ | |||
Monoclonal Antibodies | 2-methacryloyloxyethyl phosphorylcholine | Enzyme | Cancer | [ | |||
Vancomycin | PEG-b-PP and PEG-b-PC | Enzyme | Antibiosis | [ | |||
Insulin | Chitosan/alginate and m-dextran | Glucose | Diabetes | [ | |||
Insulin | PEG-b-(PAA-co-PAAPBA) | Glucose | Diabetes | [ | |||
Insulin | P(NIPAM-Dex-PBA) | Glucose | Diabetes | [ | |||
KLVFF | PCL-b-PAE,PCL-b-PEG | — | Alzheimer’s disease | [ | |||
KLVFF and Beclin-1 | PEG | — | Alzheimer’s disease | [ | |||
Docetaxel | PEG-DMPE, DMPC,DHPC | — | Cancer | [ | |||
Rivastigmine | Poly(n-butylcyanoacrylate) | — | Alzheimer’s disease | [ | |||
p53 protein | AAm and N-azidodeca(ethylene glycol)ethylacrylamide | — | Cancer | [ | |||
Ciprofloxacin | PEG-b-cholesterol | — | Antibiosis | [ | |||
Ciprofloxacin | PLGA | — | Antibiosis | [ |
[1] | Zhao Y., Zheng C. X., Liu Y., Polymeric Nanomedicine, 2019, Springer Singapore, Singapore, 233—267 |
[2] | Wilhelm S., Tavares A. J., Dai Q., Ohta S., Audet J., Dvorak H. F., Chan W. C., Nature Reviews Materials, 2016,1(5), 1—12 |
[3] |
Govender T., Stolnik S., Xiong C. D., Zhang S., Illum L., Davis S. S., Journal of Controlled Release, 2001,75(3), 249—258
doi: 10.1016/s0168-3659(01)00353-4 URL pmid: 11489313 |
[4] |
Cho K., Wang X., Nie S., Shin D. M., Clinical Cancer Research, 2008,14(5), 1310—1316
doi: 10.1158/1078-0432.CCR-07-1441 URL pmid: 18316549 |
[5] |
Zhu L., Kate P., Torchilin V. P., ACS Nano, 2012,6(4), 3491—3498
doi: 10.1021/nn300524f URL pmid: 22409425 |
[6] |
Shi D., Mi G., Shen Y., Webster T. J., Nanoscale, 2019,11(32), 15057—15071
doi: 10.1039/c9nr03931g URL pmid: 31369016 |
[7] |
Yan M., Du J. J., Gu Z., Liang M., Hu Y. F., Zhang W. J., Priceman S., Wu L. L., Zhou Z. H., Liu Z., Segura T., Tang Y., Lu Y. F., Nature Nanotechnology, 2010,5(1), 48—53
doi: 10.1038/nnano.2009.341 URL pmid: 19935648 |
[8] | Zhao M., Hu B., Gu Z., Joo K. I., Wang P., Tang Y., Nano Today, 2013,8(1), 11—20 |
[9] |
Hu Q., Sun W., Lu Y., Bomba H. N., Ye Y., Jiang T., Isaacson A. J., Gu Z., Nano Lett, 2016,16(2), 1118—1126
doi: 10.1021/acs.nanolett.5b04343 URL pmid: 26785163 |
[10] |
Liu C., Wen J., Meng Y., Zhang K., Zhu J., Ren Y., Qian X., Yuan X., Lu Y., Kang C., Adv. Mater, 2015,27(2), 292—297
doi: 10.1002/adma.201403387 URL pmid: 25400269 |
[11] | Liang S., Liu Y., Jin X., Liu G., Wen J., Zhang L. L., Li J., Yuan X. B., Chen I. S. Y., Chen W., Wang H., Shi L. Q., Zhu X. Y., Lu Y. F., Nano Research, 2016,9(4), 1022—1031 |
[12] |
Emeline R., Rumiana D., Petra S., Frederik R. W., Katharina L., Chem. Soc. Rev., 2018,47, 8572—8610
doi: 10.1039/c8cs00162f URL pmid: 30177983 |
[13] |
Li L. H., Guo K., Lu J., Venkatraman S. S., Luo D., Ng K. C., Ling E. A., Moochhala S., Yang Y. Y., Biomaterials, 2008,29(10), 1509—1517
doi: 10.1016/j.biomaterials.2007.11.014 URL pmid: 18155137 |
[14] |
Saw P. E., Yu M., Choi M., Lee E., Jon S., Farokhzad O. C., Biomaterials, 2017,123, 118—126
doi: 10.1016/j.biomaterials.2017.01.040 URL pmid: 28167390 |
[15] |
Cheng T. J., Ma R. J., Zhang Y. M., Ding Y. X., Liu J. J., Ou H. L., An Y. L., Liu J. F., Shi L. Q., Chemical Communications, 2015,51(81), 14985—14988
doi: 10.1039/c5cc05854f URL pmid: 26307207 |
[16] |
Lu Y., Guo Z., Zhang Y., Li C., Zhang Y., Guo Q., Chen Q., Chen X., He X., Liu L., Ruan C., Sun T., Ji B., Lu W., Jiang C., Adv. Sci.(Weinh), 2019,6(4), 1801586
doi: 10.1002/advs.201801586 URL pmid: 30828531 |
[17] |
Jain K. K., Nanomedicine, 2012,7(8), 1225—1233
doi: 10.2217/nnm.12.86 URL pmid: 22931448 |
[18] |
Yemisci M., Gursoy-Ozdemir Y., Caban S., Bodur E., Capan Y., Dalkara T ., Methods in Enzymolgy, 2012,508, 253—269
doi: 10.1016/B978-0-12-391860-4.00013-6 URL pmid: 22449930 |
[19] |
Zhang X., Chen G., Wen L., Yang F., Shao A. L., Li X., Long W., Mu L., European Journal of Pharmaceutical Sciences, 2013,48(4/5), 595—603
doi: 10.1016/j.ejps.2013.01.007 URL pmid: 23354153 |
[20] |
Gelperina S., Maksimenko O., Khalansky A., Vanchugova L., Shipulo E., Abbasova K., Berdiev R., Wohlfart S., Chepurnova N., Kreuter J ., European Journal of Pharmaceutics Biopharmaceutics, 2010,74(2), 157—163
doi: 10.1016/j.ejpb.2009.09.003 URL pmid: 19755158 |
[21] |
Wilson B., Samanta M. K., Santhi K., Kumar K. P. S., Paramakrishnan N., Suresh B., Brain Research, 2008,1200, 159—168
doi: 10.1016/j.brainres.2008.01.039 URL pmid: 18291351 |
[22] |
Kolter M., Ott M., Hauer C., Reimold I., Fricker G ., J. Control Release, 2015,197, 165—179
doi: 10.1016/j.jconrel.2014.11.005 URL pmid: 25445700 |
[23] |
Dhanikula R. S., Hammady T., Hildgen P., J. Pharm. Sci., 2009,98(10), 3748—3760
doi: 10.1002/jps.21669 URL pmid: 19156840 |
[24] |
Ke W. L., Shao K., Huang R. Q., Han L., Liu Y., Li J. F., Kuang Y. Y., Ye L. Y., Lou J. N., Jiang C., Biomaterials, 2009,30(36), 6976—6985
doi: 10.1016/j.biomaterials.2009.08.049 URL |
[25] |
Huang R., Ke W., Han L., Liu Y., Shao K., Ye L., Lou J., Jiang C., Pei Y ., J. Cereb. Blood Flow Metab., 2009,29(12), 1914—1923
doi: 10.1038/jcbfm.2009.104 URL pmid: 19654588 |
[26] |
Wu S. Y., Chou H. Y., Yuh C. H., Mekuria S. L., Kao Y. C., Tsai H. C., Advanced Science, 2018,5(2), 1700339
doi: 10.1002/advs.201700339 URL pmid: 29610720 |
[27] |
Wagner V., Dullaart A., Bock A. K., Zweck A., Nat. Biotechnol., 2006,24(10), 1211—1217
doi: 10.1038/nbt1006-1211 URL pmid: 17033654 |
[28] |
Azadi A., Hamidi M., Rouini M. R., Int. J. Biol. Macromol., 2013,62, 523—530
doi: 10.1016/j.ijbiomac.2013.10.004 URL pmid: 24120961 |
[29] |
Wang C., Wang J., Zhang X., Yu S., Wen D., Hu Q., Ye Y., Bomba H., Hu X., Liu Z., Dotti G., Gu Z., Science Translational Medicine, 2018, 10(429), eaan3682
doi: 10.1126/scitranslmed.aan3682 URL pmid: 29467299 |
[30] | He G., Chen S., Xu Y. J., Miao Z. H., Ma Y., Qian H. S., Lu Y., Zha Z. B., Materials Horizons, 2019,6(4), 711—716 |
[31] | Mo R., Gu Z ., Materials Today, 2016,19(5), 274—283 |
[32] |
Sun T., Zhang Y. S., Pang B., Hyun D. C., Yang M., Xia Y., Angew. Chem., Int. Ed., 2014,53(46), 12320—12364
doi: 10.1002/anie.201403036 URL pmid: 25294565 |
[33] |
Estrella V., Chen T., Lloyd M., Wojtkowiak J., Cornnell H. H., Ibrahim-Hashim A., Bailey K., Balagurunathan Y., Rothberg J. M., Sloane B. F., Johnson J., Gatenby R. A., Gillies R. J., Cancer Res., 2013,73(5), 1524—1535
doi: 10.1158/0008-5472.CAN-12-2796 URL pmid: 23288510 |
[34] |
McMahon H. T., Boucrot E., Nat. Rev. Mol. Cell Biol., 2011,12(8), 517—533
doi: 10.1038/nrm3151 URL pmid: 21779028 |
[35] |
Mayor S., Pagano R. E., Nat. Rev. Mol. Cell Biol., 2007,8(8), 603—612
doi: 10.1038/nrm2216 URL pmid: 17609668 |
[36] |
Gu Z., Aimetti A. A., Wang Q., Dang T. T., Zhang Y., Veiseh O., Cheng H., Langer R. S., Anderson D. G., ACS Nano, 2013,7(5), 4194—4201
doi: 10.1021/nn400630x URL pmid: 23638642 |
[37] |
Yu J. C., Chen Y. L., Zhang Y. Q., Yao X. K., Qian C. G., Huang J., Zhu S., Jiang X. Q., Shen Q. D., Gu Z., Chem. Commun.(Cambridge, U.K.), 2014,50(36), 4699—4702
doi: 10.1039/c3cc49870k URL pmid: 24671329 |
[38] |
Tang R., Ji W., Panus D., Palumbo R. N., Wang C., J. Controlled Release, 2011,151(1), 18—27
doi: 10.1016/j.jconrel.2010.12.005 URL pmid: 21194551 |
[39] |
Tang R., Ji W., Wang C., Macromol. Biosci, 2010,10(2), 192—201
doi: 10.1002/mabi.200900229 URL pmid: 19904722 |
[40] |
Takemoto H., Miyata K., Hattori S., Ishii T., Suma T., Uchida S., Nishiyama N., Kataoka K., Angew. Chem., Int. Ed, 2013,52(24), 6218—6221
doi: 10.1002/anie.201300178 URL pmid: 23630117 |
[41] |
Sun W., Jiang T., Lu Y., Reiff M., Mo R., Gu Z ., J. Am. Chem. Soc., 2014,136(42), 14722—14725
doi: 10.1021/ja5088024 URL pmid: 25336272 |
[42] |
Xu C. F., Zhang H. -B., Sun C. Y., Liu Y., Shen S., Yang X. Z., Zhu Y. H., Wang J., Biomaterials, 2016,88, 48—59
doi: 10.1016/j.biomaterials.2016.02.031 URL pmid: 26945455 |
[43] | Tao Y., Liu S., Zhang Y., Chi Z., Xu J ., Polymer Chemistry, 2018,9(7), 878—884 |
[44] | Xu J. H., Gao F. P., Li L. L., Ma H. L., Fan Y. S., Liu W., Guo S. S., Zhao X. Z., Wang H., Microporous Mesoporous Mater., 2013,182, 165—172 |
[45] | Radhakrishnan K., Tripathy J., Gnanadhas D. P., Chakravortty D., Raichur A. M., RSC Adv., 2014,4(86), 45961—45968 |
[46] |
Schneider G. F., Subr V., Ulbrich K., Decher G., Nano Lett., 2009,9(2), 636—642
doi: 10.1021/nl802990w URL pmid: 19170551 |
[47] | Jiang T., Mo R., Bellotti A., Zhou J., Gu Z., Adv. Funct. Mater, 2014,24(16), 2295—2304 |
[48] |
Han L., Liu C. Y., Qi H. Z., Zhou J. H., Wen J., Wu D., Xu D., Qin M., Ren J., Wang Q. X., Long L. X., Liu Y., Chen I., Yuan X. B., Lu Y. F., Kang C. S., Advanced Materials, 2019,31(19), 1805697
doi: 10.1002/adma.201805697 URL pmid: 30773720 |
[49] |
Saito G., Swanson J. A., Lee K. D., Adv. Drug Delivery Rev., 2003,55(2), 199—215
doi: 10.1016/s0169-409x(02)00179-5 URL pmid: 12564977 |
[50] |
Kuppusamy P., Li H., Ilangovan G., Cardounel A. J., Zweier J. L., Yamada K., Krishna M. C., Mitchell J. B., Cancer Res., 2002,62(1), 307—312
URL pmid: 11782393 |
[51] |
Ryu J. H., Chacko R. T., Jiwpanich S., Bickerton S., Babu R. P., Thayumanavan S., J. Am. Chem. Soc., 2010,132(48), 17227—17235
doi: 10.1021/ja1069932 URL pmid: 21077674 |
[52] |
Zhao M., Liu Y., Hsieh R. S., Wang N., Tai W., Joo K. I., Wang P., Gu Z., Tang Y., J. Am. Chem. Soc., 2014,136(43), 15319—15325
doi: 10.1021/ja508083g URL pmid: 25289975 |
[53] |
Wang Y., Zhu L., Wang Y., Li L., Lu Y., Shen L., Zhang L. W., ACS Applied Materials & Interfaces, 2016,8(51), 35106—35113
doi: 10.1021/acsami.6b14639 URL pmid: 27966861 |
[54] |
Bachelder E. M., Beaudette T. T., Broaders K. E., Dashe J., Frechet J. M. J., J. Am. Chem. Soc., 2008,130(32), 10494—10495
doi: 10.1021/ja803947s URL pmid: 18630909 |
[55] |
Wilson D. S., Dalmasso G., Wang L., Sitaraman S. V., Merlin D., Murthy N., Nat. Mater., 2010,9(11), 923—928
doi: 10.1038/nmat2859 URL pmid: 20935658 |
[56] |
Napoli A., Valentini M., Tirelli N., Mueller M., Hubbell J. A., Nat. Mater., 2004,3(3), 183—189
doi: 10.1038/nmat1081 URL pmid: 14991021 |
[57] | Ren H., Wu Y., Ma N., Xu H., Zhang X ., Soft Matter, 2012,8(5), 1460—1466 |
[58] |
Staff R. H., Gallei M., Mazurowski M., Rehahn M., Berger R., Landfester K., Crespy D., ACS Nano, 2012,6(10), 9042—9049
doi: 10.1021/nn3031589 URL pmid: 23020219 |
[59] |
Shim M. S., Xia Y., Angew. Chem. Int. Ed. Engl., 2013,52(27), 6926—6929
doi: 10.1002/anie.201209633 URL pmid: 23716349 |
[60] |
Zheng M., Liu Y. Y., Wang Y. B., Zhang D. Y., Zou Y., Ruan W. M., Yin J. L., Tao W., Park J. B., Shi B. Y., Advanced Materials, 2019,31(37), 1903277
doi: 10.1002/adma.201903277 URL pmid: 31348581 |
[61] | Xu X., Saw P. E., Tao W., Li Y., Ji X., Bhasin S., Liu Y., Ayyash D., Rasmussen J., Huo M., Advanced Materials, 2017,29(33), 1700141 |
[62] |
Ta T., Porter T. M., J. Controlled Release, 2013,169(1/2), 112—125
doi: 10.1016/j.jconrel.2013.03.036 URL pmid: 23583706 |
[63] | Parrish E., Seeger S. C., Composto R. J., Macromolecules, 2018,51(10), 3597—3607 |
[64] |
Mura S., Nicolas J., Couvreur P ., Nature Materials, 2013,12(11), 991—1003
doi: 10.1038/nmat3776 URL pmid: 24150417 |
[65] |
Kang H., Liu H., Zhang X., Yan J., Zhu Z., Peng L., Yang H., Kim Y., Tan W ., Langmuir, 2011,27(1), 399—408
doi: 10.1021/la1037553 URL pmid: 21126095 |
[66] |
Schroeder A., Goldberg M. S., Kastrup C., Wang Y., Jiang S., Joseph B. J., Levins C. G., Kannan S. T., Langer R., Anderson D. G., Nano Letters, 2012,12(6), 2685—2689
doi: 10.1021/nl2036047 URL pmid: 22432731 |
[67] |
Pang Q., Zheng X., Luo Y., Ma L., Gao C ., Journal of Materials Chemistry B, 2017,5(45), 8975—8982
doi: 10.1039/c7tb01696d URL pmid: 32264124 |
[68] |
Zheng M., Yue C., Ma Y., Gong P., Zhao P., Zheng C., Sheng Z., Zhang P., Wang Z., Cai L ., ACS Nano, 2013,7(3), 2056—2067
doi: 10.1021/nn400334y URL pmid: 23413798 |
[69] |
Yoo H. S., Lee E. A., Park T. G., Journal of Controlled Release, 2002,82(1), 17—27
doi: 10.1016/s0168-3659(02)00088-3 URL pmid: 12106973 |
[70] | Chen Y., Li Y., Shen W., Li K., Yu L., Chen Q., Ding J ., Scientific Reports, 2016,6(1), 2045—2322 |
[71] |
Li Y. M., Liu G. H., Wang X. R., Hu J. M., Liu S. Y., Angew. Chem.-Int. Ed., 2016,55(5), 1760—1764
doi: 10.1002/anie.201509401 URL pmid: 26694087 |
[72] |
Wang B., Ma R., Liu G., Li Y., Liu X., An Y., Shi L ., Langmuir, 2009,25(21), 12522—12528
doi: 10.1021/la901776a URL pmid: 19810675 |
[73] | Wu Z. M., Zhang X. G., Guo H. L., Li C. X., Yu D. M., Journal of Materials Chemistry, 2012,22(42), 22788—22796 |
[74] |
Qu A. T., Huang F., Li A., Yang H. R., Zhou H., Long J. F., Shi L. Q., Chemical Communications, 2017,53(7), 1289—1292
doi: 10.1039/c6cc07803f URL pmid: 28067349 |
[75] |
Luo Q., Lin Y. X., Yang P. P., Wang Y., Qi G. B., Qiao Z. Y., Li B. N., Zhang K., Zhang J. P., Wang L., Nature Communications, 2018,9(1), 1—12
doi: 10.1038/s41467-017-02088-w URL pmid: 29317637 |
[76] |
Wilson B., Samanta M. K., Santhi K., Kumar K. P. S., Paramakrishnan N., Suresh B., Brain Research, 2008,1200, 159—168
doi: 10.1016/j.brainres.2008.01.039 URL pmid: 18291351 |
[77] |
Liu X., Nielsen L. H., Klodzinska S. N., Nielsen H. M., Qu H., Christensen L. P., Rantanen J., Yang M., Eur. J. Pharm. Biopharm., 2018,123, 42—49
doi: 10.1016/j.ejpb.2017.11.004 URL pmid: 29129734 |
[78] | Zheng C. X., Zhao Y., Liu Y., Chin. J. Polym. Sci., 2018,36(3), 322—346 |
[79] |
Bae Y. H., Park K., J. Controlled Release, 2011,153(3), 198—205
doi: 10.1016/j.jconrel.2011.06.001 URL pmid: 21663778 |
[80] |
Gao H., Xiong J., Cheng T., Liu J., Chu L., Liu J., Ma R., Shi L ., Biomacromolecules, 2013,14(2), 460—467
doi: 10.1021/bm301694t URL pmid: 23281663 |
[81] |
Mo R., Sun Q., Xue J., Li N., Li W., Zhang C., Ping Q., Adv. Mater, 2012,24(27), 3659—3665
doi: 10.1002/adma.201201498 URL pmid: 22678851 |
[82] |
Cui D., Huang J., Zhen X., Li J., Jiang Y., Pu K., Angew. Chem. Ed., 2019,58(18), 5920—5924
doi: 10.1002/anie.201814730 URL pmid: 30793456 |
[83] |
Zhao L., Xiao C., Wang L., Gai G., Ding J., Chem. Commun.(Cambridge, U.K.), 2016,52(49), 7633—7652
doi: 10.1039/c6cc02202b URL pmid: 27194104 |
[84] | Podual K., Doyle F. J., Peppas N. A., Polymer, 2000,41(11), 3975—3983 |
[85] |
Selkoe D. J., Ann. Neurol., 2013,74(3), 328—336
doi: 10.1002/ana.24001 URL pmid: 25813842 |
[86] |
Watanabe K. I., Nakamura K., Akikusa S., Okada T., Kodaka M., Konakahara T., Okuno H., Biochem. Biophys. Res. Commun., 2002,290(1), 121—124
doi: 10.1006/bbrc.2001.6191 URL pmid: 11779142 |
[87] | Liu F., Du W., Sun Y., Zheng J., Dong X., Front. Chem. Sci. Eng., 2014,8(4), 433—444 |
[88] |
Zhao Y., Cai J., Liu Z., Li Y., Zheng C., Zheng Y., Chen Q., Chen H., Ma F., An Y., Xiao L., Jiang C., Shi L., Kang C., Liu Y ., Nano Lett, 2019,19(2), 674—683
doi: 10.1021/acs.nanolett.8b03644 URL pmid: 30444372 |
[89] | Munoz-Bonilla A., Fernandez-Garcia M., Prog. Polym. Sci, 2012,37(2), 281—339 |
[90] |
Zhang L., Pornpattananangkul D., Hu C. M. J., Huang C. M., Curr. Med. Chem., 2010,17(6), 585—594
doi: 10.2174/092986710790416290 URL pmid: 20015030 |
[91] |
Liu Y., Busscher H. J., Zhao B., Li Y., Zhang Z., van der Mei H. C., Ren Y., Shi L., ACS Nano, 2016,10(4), 4779—4789
doi: 10.1021/acsnano.6b01370 URL pmid: 26998731 |
[1] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[2] | WENG Meiqi, SHANG Guiming, WANG Jiatai, LI Shenghua, FAN Zhi, LIN Song, GUO Minjie. Template Simulation of Organophosphorus Nerve Agent Molecularly Imprinted Polymers [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220136. |
[3] | DING Yang, WANG Wanhui, BAO Ming. Recent Progress in Porous Framework-immobilized Molecular Catalysts for CO2 Hydrogenation to Formic Acid [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220309. |
[4] | WANG Zhengwen, GAO Fengxiang, CAO Han, LIU Shunjie, WANG Xianhong, WANG Fosong. Synthesis and Property of CO2 Copolymer⁃based UV-curable Polymer [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220236. |
[5] | JI Fa, LIU Ling, YU Linling, SUN Yan. Effects of Muco-inert and Acid-sensitive Modification on Mucosal Penetration of Nanoparticles [J]. Chem. J. Chinese Universities, 2022, 43(6): 20210837. |
[6] | GAO Wenxiu, LYU Jieqiong, GAO Yongping, KONG Changjian, WANG Xueping, GUO Shengnan, LOU Dawei. Preparation of Ethyl α⁃Cyanocinnamate Catalyzed by Nitrogen-rich Porous Organic Polymers [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220078. |
[7] | LIU Qingqing, WANG Pu, WANG Yongshuai, ZHAO Man, DONG Huanli. Synthesis and Topochemical Polymerization Study of Naphthalene/perylene Imides Substituted Diacetylene Derivatives [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220091. |
[8] | LUO Bian, ZHOU Fen, PAN Mu. Study on Preparation and Accessibility of Hierarchical Porous Carbon Supported Platinum Catalyst [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210853. |
[9] | WANG Mingfang, FU Hua, FU Zhibo, WANG Yuerong, ZHANG Hongyang, ZHANG Min, HU Ping. Separation and Characterization of Polymer Blends Using Online Ultra-high Performance Liquid Chromatography-Size Exclusion Chromatography [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210865. |
[10] | TAO Xingfu, HAN Chenglong, YANG Yang, LIU Kun. Synthesis of Aluminum Nanoparticles@Polymer Core-shell Nanostructures by Surface-initiated Polymerization [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220367. |
[11] | TANG Yuanhui, LI Chunyu, LIN Yakai, ZHANG Chunhui, LIU Ze, YU Lixin, WANG Haihui, WANG Xiaolin. Dissipative Particle Dynamics Simulation of the Effect of Polymer Chain Rigidity on Membranes Formation by Nonsolvent Induced Phase Separation Process [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220169. |
[12] | MA Jianxin, LIU Xiaodong, XU Na, LIU Guocheng, WANG Xiuli. A Multi-functional Zn(II) Coordination Polymer with Luminescence Sensing, Amperometric Sensing, and Dye Adsorption Performance [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210585. |
[13] | YANG Yingjie, ZHANG Xiaorong, SUN Yuxue, LIU Jun, XIE Haiming. Synthesis of a Dual-lithium-salt Comb Polymer Electrolyte and Its Electrochemical Performance [J]. Chem. J. Chinese Universities, 2021, 42(9): 2861. |
[14] | MA Yukun, JIN Hui, REN Chuanli, LI Zhibo. Ring-opening Polymerization of Cyclic Esters Using Recyclable Polystyrene Supported Urea-Base Binary Catalyst [J]. Chem. J. Chinese Universities, 2021, 42(9): 2968. |
[15] | LI Haibo, XIAO Changfa, JIANG Long, HUANG Yun, DAN Yi. Copolymerization of Methyl Acrylate and 1-Octene Catalyzed by the Loaded Aluminum Chloride on MCM-41 Molecular Sieve [J]. Chem. J. Chinese Universities, 2021, 42(9): 2974. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||