Chem. J. Chinese Universities ›› 2018, Vol. 39 ›› Issue (2): 193.doi: 10.7503/cjcu20170225
• Articles: Inorganic Chemistry • Previous Articles Next Articles
ZHANG Hanbing1, LI Chengren1,*(), LI Shufeng2, GAO Xinyu1, HONG Yuanzhi1, LI Zhichao1, SUN Jingchang1
Received:
2017-04-12
Online:
2018-02-10
Published:
2017-12-23
Contact:
LI Chengren
E-mail:lshdg@sina.com
Supported by:
CLC Number:
TrendMD:
ZHANG Hanbing, LI Chengren, LI Shufeng, GAO Xinyu, HONG Yuanzhi, LI Zhichao, SUN Jingchang. White Light Emission Performance of Y2O3∶Eu3+,Dy3+ Nanophosphors†[J]. Chem. J. Chinese Universities, 2018, 39(2): 193.
Fig.1 XRD patterns of the nanophosphors with different sinter termpratures and dopantsa. Y2O3(JCPDS: 43-1036); b. Y2O3∶Eu3+,Dy3+-1300 ℃; c. Y2O3∶Eu3+,Dy3+-1300 ℃+H3BO3; d. Y2O3∶Eu3+,Dy3+-1400 ℃; e. Y2O3∶Eu3+,Dy3+-1400 ℃+H3BO3; f. Y2O3∶Eu3+,Dy3+, 10%Sr2+-1300 K; g. Y2O3∶Eu3+,Dy3+, 50%Sr2+-1300 K; h. SrY2O4(JCPDS:32-1272).
Fig.2 SEM images of Y2O3∶Eu3+,Dy3+(Sr2+) nanophosphors(A) Y2O3∶Eu3+,Dy3+-1300 ℃; (B) Y2O3∶Eu3+,Dy3+-1300 ℃+H3BO3; (C) Y2O3∶Eu3+,Dy3+-1400 ℃;(D) Y2O3∶Eu3+,Dy3+,10%Sr2+-1400 ℃.
Fig.7 CIE values of Y2O3∶Eu3+,1.0%Dy3+ with varied Eu3+ concentrationsMolar fraction of Eu3+ and CIE value: a. 0.5%(0.29, 0.31); b. 0.8%(0.30, 0.30); c. 1.0%(0.32, 0.33); d. 1.2%(0.34, 0.33); e. 1.5%(0.32, 0.30); f. 2.0%(0.37, 0.29).
Fig.9 CIE values of Y2O3∶Sr2+, 1.0%Eu3+, 1.0%Dy3+ with varied Sr3+ concentrationsMolar fraction Sr2+ and CIE value: a. 5.0%(0.31, 0.31); b. 8.0%(0.32, 0.31); c. 10%(0.33, 0.32); d. 20%(0.38, 0.25); e. 30%(0.44, 0.21); f. 50%(0.35, 0.17).
[1] | Liang R. Y., Xu D. D., Zha W. Y., Qi J. Z., Huang L. H., Chem. J. Chinese Universities,2016, 37(11), 1953—1959 |
(梁瑞钰, 徐冬冬,查文莹,齐楫真,黄浪欢.高等学校化学学报, 2016, 37(11), 1953—1959) | |
[2] | Yang M., Shi H. Y., Ma L. W., Gui Q. Y., Ma J. L., Lin M. M., Sunna A., Zhang W. J., Dai L. M., Qu J., Liu Y.,J. Alloy Compd, 2017, 695(2), 202—207 |
[3] | Kuru M., Sahin O., Ozarslan S., Ozmetin A. E., J. Alloy Compd, 2017, 694(2), 726—732 |
[4] | Pavan K. N. S., Seshu B. V., Cryogenics,2017, 81(2), 47—53 |
[5] | Hu H. Y., Xia H. P., Hu J. X., Zhang Y. P., Jiang H. C., Chin. Phys.B,2013, 22(2), 506—510 |
[6] | Tang H., Xia H. P., J. Inorg. Mater., 2013, 28(7), 696—700 |
(唐汉, 夏海平. 无机材料学报, 2013, 28(7), 696—700) | |
[7] | Hu Y., Xia H. P., Zhang Y. P., Wang D. J., Rare Metal Mat.Eng., 2012, 41(s3), 506—510 |
(胡元,夏海平,张约品,王东杰.稀有金属材料与工程, 2012, 41(s3), 506—510) | |
[8] | Zhang L., Xia H. P., Zhang Y. P., Wang D. J., Rare Metal Mat.Eng., 2012, 41(S3), 552—555 |
(张丽, 夏海平, 张约品, 王东杰.稀有金属材料与工程, 2012, 41(S3), 552—555) | |
[9] | Li B., Lei P., Sun B., Bai Y. B., Chin. Phys.B., 2017, 26(2), 024206 |
[10] | Wang X. J., Wang B., Wang L., Guo R. M., Isshiki H., Kimura T., Zhou Z., Appl. Phys. Lett., 2011, 98(7), 071903 |
[11] | Li C. R., Li S. F., Dong B., Liu Z. F., Song C. L., Yu Q. X., Sensor Actuat B-Chem., 2008, 134(8), 313—316 |
[12] | Dong B., Cao B. S., He Y. Y., Liu Z., Li Z. P., Feng Z. Q., Adv. Mater., 2012, 24(15), 1987—1993 |
[13] | Wang C. P., Li Y. F., Zhang Y. D., Chem. J. Chinese Universities,2016, 37(4), 607—612 |
(王彩萍, 李友芬, 张一东.高等学校化学学报, 2016, 37(4), 607—612) | |
[14] | Song Z., Dong J. L., Ren Y. H., Yuan W., Zhang C. F., Yang B. S., Chem. J. Chinese Universities,2016, 37(7), 1245—1249 |
(宋珍, 董金龙, 任跃红, 袁雯, 张彩凤, 杨斌绳.高等学校化学学报, 2016, 37(7), 1245—1249) | |
[15] | Wan J. Q., Liu Q., Liu G. H., Zhou Z. Z., Ni J., Xie R. J., J. Mater. Chem.C,2017, 5(7), 1614—1623 |
[16] | Zhang Y. J., Zhang H., Dong P. P., Cheng A. Y., Yu J. J., Li D. S., Cao G. Y., J. Mater. Sci., 2017, 28(1), 86—93 |
[17] | Ge K., Zhang C. M., Sun W. T., Liu H. F., Jin Y., Li Z. H., Liang X. J., Jia G., Zhang J. C., ACS Appl. Mater. Inter., 2016, 8(38), 25078—25086 |
[18] | Fukushima S., Furukawa T., Niioka H., Ichimiya M., Sannomiya T., Tanaka N., Onoshima D., Yukawa H., Baba Y., Ashida M., Miyake J., Araki T., Hashimoto M., Sci. Rep., 2016, 6(6), 25950 |
[19] | Kumar D., Sharma M., Pandey O. P., J. Lumin., 2015, 158(2), 268—274 |
[20] | Phan T. L., Chung D. N., Thang P. D., Huyen P. T., Manh T. V., Mater. Trans., 2015, 56(9), 1412—1415 |
[21] | Abdellaoui N., Pereira A., Berthelot A., Moine B., Blanchard N. P., Nanotechnology,2015, 26(9), 095701 |
[22] | Shivaramu N. J., Lakshminarasappa B. N., Nagabhushana K. R., Singh F., Radiation Effects and Defects in Solids,2016, 171(5/6), 1—13 |
[23] | Lingadurai K., Sundarakannan B., Nagarajan E. R., Kominami H., Nakanishi H., J. Lumin., 2016, 177(9), 249—253 |
[24] | Devi H. J., Singh W. R., Loitongbam R. S., J. Fluoresc., 2016, 26(3), 875—889 |
[25] | Engelsen D. D., Ireland T. G., Harris P. G., Fern G. R., Reip P., J. Mater. Chem.C,2016, 4(38), 8930—8938 |
[26] | Adam J., Metzger W., Koch M., Rogin P., Coenen T., Atchison J. S., König P., Nanomaterials,2017, 7(2), 26 |
[27] | Kattel K., Park J. Y., Xu W. L., Kim H. G., Lee E. J., Bony B. A., Heo W. C., Lee J. J., Jin S., Baeck J. S., Chang Y. M., Kim T. J., Bae J. E., Chae K. S., Lee G. H., ACS Appl. Mater. Interf., 2017, 3(9), 3325—3334 |
[28] | Li J. K., Liu Z. P., Luo J. F., Ma X. B., Teng X., Liu Z. M., Key Eng. Mater., 2017, 726(2), 255—260 |
[29] | Chanthima N., RuangtaweepY., Kaewkhao J., Key Eng. Mater., 2016, 702(6), 62—65 |
[30] | Jyotsana A., Maurya G. S., Srivastava A. K., Rai A. K., Appl. Phys.A,2014, 117(3), 1269—1274 |
[31] | Kumar D., Sharma M., Pandey O. P., Opt. Mater., 2014, 36(7), 1131—1138 |
[32] | Yadav R. S., Yadav R. V., Bahadur A., Yadav T. P., Rai S. B., Mater. Res. Exp., 2016, 3(3), 036201 |
[33] | Shi H., Zhang X. Y., Dong W. L., Mi X. Y., Wang N. L., Li Y., Liu H. W., Chin. Phys.B,2016, 25(4), 047802 |
[34] | Pavitra E., Raju G. S. R., Park W., New J. Chem., 2013, 38(1), 163—169 |
[35] | Lazarowska A., Mahlik S., Grinberg M., Yeh C. W., Liu R. S., Opt. Mater., 2014, 37, 734—739 |
[1] | JIANG Xiaokang, ZHOU Qi, ZHOU Hengwei. Synthesis and Luminescence Properties of Gd2ZnTiO6∶Dy3+, Eu3+ Single Phase White Light-emitting Phosphors [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220029. |
[2] | ZHANG Lingyu, ZHANG Jilong, QU Zexing. Dynamics Study of Intramolecular Vibrational Energy Redistribution in RDX Molecule [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220393. |
[3] | YUAN Bo, QI Chaochao, ZHANG Xiangting, LUAN Guoyan, ZOU Haifeng. Luminescence Property and LED Device Application for Color-tunable Ca2LaTaO6∶Dy3+,Sm3+ Phosphor Based on Energy Transfer [J]. Chem. J. Chinese Universities, 2021, 42(9): 2717. |
[4] | DING Hui, ZHOU Xuanxuan, ZHANG Zihui, XIA Kunlin, ZHAO Yunpeng. Solvent-free and High-yielding Synthesis of Highly Efficient Red-emitting Carbon Dots and Their Application in White Light Devices [J]. Chem. J. Chinese Universities, 2021, 42(6): 2080. |
[5] | ZHU Min, ZHANG Xiao, YOU Shuli. Visible-light-promoted Dearomatization of Benzene and Derivatives† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1407. |
[6] | CHEN Qiuhong, YE Yanchun, REN Mengran, WANG Kaimin, TANG Huaijun, WANG Zhengliang, ZHOU Qiang. Synthesis of an Orange-red-emitting Cationic Iridium(III) Complex Containing a Triphenylamine-triazole Bipolar Unit and Its Application in LEDs [J]. Chem. J. Chinese Universities, 2020, 41(12): 2717. |
[7] | WANG Mengyu, CAO Simin, LI Haoyang, ZHANG Mengjie, LI Dong, ZHAO Zenan, XU Jianhua. Fluorescence Resonance Energy Transfer Between Coenzyme NADH and Tryptophan [J]. Chem. J. Chinese Universities, 2020, 41(11): 2473. |
[8] | FENG Wei,WANG Bowei,JIANG Yang,LI Longyun. Design, Preparation and Surface-enhanced Raman Scattering(SERS) Spectrum of Single Ag Nanodot† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1345. |
[9] | DONG Xiangyang,NIU Xiaoqing,WEI Jishi,XIONG Huanming. One-step Hydrothermal Synthesis of Copper Doped Carbon Dots and Their Application in White Light Devices† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1288. |
[10] | LIANG Donglei, SONG Qiusheng, YAO Yutian, LIU Ben. Preparation of Complex Nanogel with Up-conversion Fluorescence-responsive Performance and Its Fluorescence Energy Transfer Behavior† [J]. Chem. J. Chinese Universities, 2019, 40(3): 583. |
[11] | SUN Riyong,CHEN Zeyu,YE Yanchun,CHEN Mingxian,TANG Huaijun,WANG Kaimin,WANG Zhengliang. Bis(2-phenylpyridine)(2,2'-bithiazole)iridium(Ⅲ) Hexafluorophosphate: Synthesis and Application in Neutral/Warm White Light-emitting Diodes† [J]. Chem. J. Chinese Universities, 2018, 39(5): 869. |
[12] | TANG Keyun,LI Luoyuan,FU Limin,AI Xicheng,ZHANG Jianping. Effect of Crystal Matrix on Energy Transfer Mechanism in Rare-earth Upconversion Nanomaterials† [J]. Chem. J. Chinese Universities, 2018, 39(10): 2136. |
[13] | LIU Huiqiang, PENG Chao, CHEN Ning, LIU Yangping. Novel Fluorescent/EPR Difunctional Probe for Detecting Hypochlorite† [J]. Chem. J. Chinese Universities, 2017, 38(9): 1542. |
[14] | SU Yue, LEI Pengpeng, FENG Jing, ZHANG Hongjie. Tunable Upconversion Luminescence of Mn2+ Doping NaBiF4∶Yb/Er Particles† [J]. Chem. J. Chinese Universities, 2017, 38(12): 2135. |
[15] | ZHANG Chao, PAN Chengling, SHENG Shaoding. Study on the Penetrating Energy of Zigzag Single-walled Carbon Nanotubes† [J]. Chem. J. Chinese Universities, 2016, 37(6): 1108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||