Chem. J. Chinese Universities ›› 2014, Vol. 35 ›› Issue (4): 804.doi: 10.7503/cjcu20131151
• Physical Chemistry • Previous Articles Next Articles
ZHANG Heng, LIU Chengyong, GONG Shouzhe, FENG Wenfang, XU Fei, NIE Jin*(), ZHOU Zhibin*(
)
Received:
2013-11-26
Online:
2014-04-10
Published:
2014-01-23
Contact:
NIE Jin,ZHOU Zhibin
E-mail:niejin@mail.hust.edu.cn;zb-zhou@mail.hust.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHANG Heng, LIU Chengyong, GONG Shouzhe, FENG Wenfang, XU Fei, NIE Jin, ZHOU Zhibin. Preparation, Characterization and Physicochemical Properties of Alkali Bis(polyfluoroalkyloxysulfonyl)imides and Electrochemical Properties of the Lithium Salts†[J]. Chem. J. Chinese Universities, 2014, 35(4): 804.
Salt | Ts-s/℃ | Tm/℃ | ΔHm/(J·g-1) | Td/℃ | Salt | Ts-s/℃ | Tm/℃ | ΔHm/(J·g-1) | Td/℃ |
---|---|---|---|---|---|---|---|---|---|
LiTFESI | 67 | 174 | 37.0 | 246 | LiHFPSI | 211 | 35.8 | 217 | |
NaTFESI | 134 | 183 | 32.3 | 283 | NaHFPSI | 210 | 10.3 | 312 | |
KTFESI | 47 | 159 | 19.0 | 298 | KHFPSI | 175 | 40.9 | 319 | |
RbTFESI | 93 | 141 | 2.6 | 298 | RbHFPSI | 142 | 169 | 10.4 | 262 |
CsTFESI | 174 | 47.1 | 290 | CsHFPSI | 117 | 21.8 | 315 |
Table 1 Thermal properties of alkali salts of bis(polyfluoroalkyloxysulfonyl)imide
Salt | Ts-s/℃ | Tm/℃ | ΔHm/(J·g-1) | Td/℃ | Salt | Ts-s/℃ | Tm/℃ | ΔHm/(J·g-1) | Td/℃ |
---|---|---|---|---|---|---|---|---|---|
LiTFESI | 67 | 174 | 37.0 | 246 | LiHFPSI | 211 | 35.8 | 217 | |
NaTFESI | 134 | 183 | 32.3 | 283 | NaHFPSI | 210 | 10.3 | 312 | |
KTFESI | 47 | 159 | 19.0 | 298 | KHFPSI | 175 | 40.9 | 319 | |
RbTFESI | 93 | 141 | 2.6 | 298 | RbHFPSI | 142 | 169 | 10.4 | 262 |
CsTFESI | 174 | 47.1 | 290 | CsHFPSI | 117 | 21.8 | 315 |
Fig.1 DSC curves of alkali salts of TFESI-(A) and HFPSI-(B) (A) a. LiTFESI; b. NaTFESI; c. KTFESI; d. RbTFESI; e. CsTFESI. (B) a. LiHFPSI; b. NaHFPSI; c. KHFPSI; d. RbHFPSI; e. CsHFPSI.
Salt | 103η/(Pa·s) | Tg/℃ | σ/(mS·cm-1) | Oxidation potential/V | Al corrosion |
---|---|---|---|---|---|
LiTFESI | 3.2 | -106 | 4.2 | 5.6 | No |
LiHFPSI* | 5.7 | -100 | 3.3 | 5.7 | No |
Table 2 Viscosity(η), glass transition temperatures(Tg), ionic conductivity(σ), oxidation potential and Al corrosion of 1.0 mol/L lithium salt in EC/EMC(3:7, volume ratio) at 25 ℃
Salt | 103η/(Pa·s) | Tg/℃ | σ/(mS·cm-1) | Oxidation potential/V | Al corrosion |
---|---|---|---|---|---|
LiTFESI | 3.2 | -106 | 4.2 | 5.6 | No |
LiHFPSI* | 5.7 | -100 | 3.3 | 5.7 | No |
Fig.5 Arrhenius plots of specific conductivity of 1.0 mol/L LiTFESI, LiHFPSI, LiPF6, LiTFSI, LiClO4, and LiBF4 in a mixture of EC/EMC(3:7, volume ratio)
Fig.8 SEM images of Al electrodes after the potential cycling in electrolytes of 1.0 mol/L LiTFESI(A) and LiTFSI(B) in a mixture of EC/EMC(3:7, volume ratio)
[1] | Xu K., Chem. Rev., 2004, 104, 4303—4417 |
[2] | Zhou Z. B., Takeda M., Fujii T., Ue M., J. Electrochem. Soc., 2005, 152, A351—A356 |
[3] | Han H. B., Guo J., Zhang D. J., Feng S. W., Feng W. F., Nie J., Zhou Z. B., Electrochem. Commun., 2011, 13, 265—268 |
[4] | Han H. B., Zhou S. S., Zhang D. J., Feng S. W., Li L. F., Liu K., Feng W. F., Nie J., Li H., Huang X. J., Armand M., Zhou Z. B., J. Power Sources,2011, 196, 3623—3632 |
[5] | Han H. B., Guo J., Feng S. W., Nie J., Zhou Z. B., Chem. J. Chinese Universities,2012, 33(4), 786—793 |
(韩鸿波, 郭俊, 冯绍伟, 聂进, 周志彬. 高等学校化学学报, 2012, 33(4), 786—793) | |
[6] | Aravindan V., Gnanaraj J., Madhavi S., Liu H. K., Chem. Eur. J., 2011, 17, 14326—14346 |
[7] | Armand M., Kadiri C. E. M. F., Bis Perhalogenoacyl -or Sulfonylimides of Alkali Metals, Their Solid Solutions with Plastic Materials and Their Use to the Constitution of Conductor Elements for Electrochemical Generators, US 4505997,1985-03-19 |
[8] | Krause L. J., Lamanna W., Summerfield J., Engle M., Korba G., Loch R., Atanasoski R., J. Power Sources,1997, 68, 320—325 |
[9] | Hagiwara R., Tamaki K., Kubota K., Goto T., Nohira T., J. Chem. Eng. Data,2008, 53, 355—358 |
[10] | Kubota K., Nohira T., Goto T., Hagiwara R., ECS Transactions,2009, 16, 91—98 |
[11] | Kubota K., Nohira T., Hagiwara R., J. Chem. Eng. Data,2010, 55, 2546—2549 |
[12] | Liu Y. L., Zhou S. S., Han H. B., Li H., Nie J., Zhou Z. B., Chen L. Q., Huang X. J., Electrochim. Acta,2013, 105, 524—529 |
[13] | Nie J., Zhao Z. M., Kobayashi H., Sonoda T., J. Huazhong Uni. Sci. & Tech., 1996, 24, 96—98 |
(聂进, 赵忠明, 小林宏, 園田高明. 华中理工大学学报, 1996, 24, 96—98) | |
[14] | Nie J., Sonoda T., Kobayashi H., J. Fluorine Chemistry,1998, 87, 45—47 |
[15] | Kita F., Kawakami A., Nie J., Sonoda T., Kobayashi H., J. Power Sources,1997, 68, 307—310 |
[16] | Kita F., Sinomoto S., Kawakami A., Kamizori H.,Sonoda T., Nagashima H., Nie J., Pavlenko N. V., Yagupolskii Y. L., J. Power Sources,2000, 90, 27—32 |
[17] | Zhang H., Han H. B., Gong S. Z., Fu S. T., Nie J., Zhou Z. B., Chinese Science Bulletin,2012, 57, 2623—2631 |
(张恒, 韩鸿波, 巩守哲, 付世涛, 聂进, 周志彬. 科学通报, 2012, 57, 2623—2631) | |
[18] | Zhang X. Y., Devine T. M., J. Electrochem. Soc., 2006, 153, B375—B383 |
[1] | JIA Yanggang, SHAO Xia, CHENG Jie, WANG Pengpeng, MAO Aiqin. Preparation and Lithium Storage Performance of Pseudocapacitance-controlled Perovskite High-entropy Oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Anode Materials [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220157. |
[2] | BAO Junquan, ZHENG Shibing, YUAN Xuming, SHI Jinqiang, SUN Tianjiang, LIANG Jing. An Organic Salt PTO(KPD)2 with Enhanced Performance as a Cathode Material in Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(9): 2911. |
[3] | WU Zhuoyan, LI Zhi, ZHAO Xudong, WANG Qian, CHEN Shunpeng, CHANG Xinghua, LIU Zhiliang. A Highly Efficient One-step Preparation Method of Nano-silicon and Carbon Composite for High-performance Lithium Ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(8): 2500. |
[4] | YI Conghua, SU Huajian, QIAN Yong, LI Qiong, YANG Dongjie. Preparation of Lignin Nanocarbon and Its Performance as a Negative Electrode for Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(6): 1807. |
[5] | MAO Eryang, WANG Li, SUN Yongming. Advances in Alloy-based High-capacity Li-containing Anodes for Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(5): 1552. |
[6] | WANG Yimeng, LIU Kai, WANG Baoguo. Coating Strategies of Ni-rich Layered Cathode in LIBs [J]. Chem. J. Chinese Universities, 2021, 42(5): 1514. |
[7] | SUN Quanhu, LU Tiantian, HE Jianjiang, HUANG Changshui. Advances in the Study of Heteratomic Graphdiyne Electrode Materials [J]. Chem. J. Chinese Universities, 2021, 42(2): 366. |
[8] | ZHOU Zhan, MA Lufang, TAN Chaoliang. Preparation of Layered (NH4)2V6O16·H2O Nanosheets as an Anode for Li-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(2): 662. |
[9] | GONG Shanshan, WU Tong, WANG Guange, HUANG Qing, SU Yuefeng, WU Feng. Screening of Deep Eutectic Solvent Based on Efficient Recovery of Spent Lithium⁃ion Battery Cathode Materials [J]. Chem. J. Chinese Universities, 2021, 42(10): 3151. |
[10] | XIANG Houzheng, XIE Hongxiang, LI Wenchao, LIU Xiaolei, MAO Aiqin, YU Haiyun. Synthesis and Electrochemical Performance of Spinel-type High-entropy Oxides [J]. Chem. J. Chinese Universities, 2020, 41(8): 1801. |
[11] | LU Di,ZHENG Chunman,CHEN Yufang,LI Yujie,ZHANG Hongmei. Synthesis of Li-rich Layers/Spinel/Carbon Composite Cathode Materials with Phenol Formaldehyde Resin and Its Electrochemical Performance† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1684. |
[12] | CHEN Liangdan,ZOU Wei,WU Liang,XIA Fanjie,HU Zhiyi,LI Yu,SU Baolian. Nano-Al2O3 Coated Li-rich Cathode Material Li1. 2Ni0.13Co0.13Mn0.54O2 for Highly Improved Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2020, 41(6): 1329. |
[13] | LI Xiangnan, WANG Qiuxian, FAN Yong, YU Mingming, ZHANG Huishuang, YANG Shuting. Deposition Method Synthesis of Nano-phosphorus/Biomass Carbon Composites and Their High- and Low-temperature Electrochemical Performances as Anode Material in Lithium-ion Batteries † [J]. Chem. J. Chinese Universities, 2019, 40(9): 1949. |
[14] | YANG Jinge, LI Yujie, LU Di, CHEN Yufang, SUN Weiwei, ZHENG Chunman. Morphology Control and Lithium Storage Performance of Micro/nano Li-rich Cathode Material† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1495. |
[15] | YAO Fengnan,LI Yu,FENG Wei. Synthesis and Electrochemical Performance of Carbon-coated FeF2 Nanocomposite† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1418. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||