Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (3): 20240358.doi: 10.7503/cjcu20240358
• Articles: Inorganic Chemistry • Previous Articles Next Articles
ZENG Xiangchu1,2,3, DING Yixuan1,2,3, WU Zhe1,2,3, WANG Yanping1,2,3(), LIU Mu4
Received:
2024-07-18
Online:
2025-03-10
Published:
2024-11-19
Contact:
WANG Yanping
E-mail:wangyanpingdy@163.com
Supported by:
CLC Number:
TrendMD:
ZENG Xiangchu, DING Yixuan, WU Zhe, WANG Yanping, LIU Mu. In situ Cupric Complexation Regulated Fenton-like Oxidation to Enhance the Selective Decontamination of Trace Aqueous Quinolones[J]. Chem. J. Chinese Universities, 2025, 46(3): 20240358.
Material | MXF | CPFX | LVFX | NFLX | Cu(Ⅱ) | TOC |
---|---|---|---|---|---|---|
Content/(μg‧L‒1) | 0.43 | 0.58 | 0.62 | 0.17 | 372.46 | 8.75 |
Table 1 Content of MXF, CPFX, LVFX, NFLX, Cu(Ⅱ) and the TOC in real breeding wastewater
Material | MXF | CPFX | LVFX | NFLX | Cu(Ⅱ) | TOC |
---|---|---|---|---|---|---|
Content/(μg‧L‒1) | 0.43 | 0.58 | 0.62 | 0.17 | 372.46 | 8.75 |
Species | E/(kJ·mol-1) | Gcorr303 K /(kJ·mol-1) | Gcorr353 K/(kJ·mol-1) | G303 K/(kJ·mol-1) | G353 K/(kJ·mol-1) |
---|---|---|---|---|---|
Cu(H2O)42+ | -1.3195×106 | 17.6896 | 155.4664 | -1.3194×106 | -1.3194×106 |
H2O | -2.0055×106 | 6.7843 | -3.0981 | -2.0050×105 | -2.0055×106 |
H+ | 0 | 26.7801 | -32.3199 | -1.1703×103 | -1.1759×103 |
H3O | -2.0164×106 | 41.4566 | 31.1883 | -2.0164×105 | -2.0165×105 |
MXF | -3.6194×106 | 1001.6886 | 962.9651 | -3.6184×106 | -3.6184×106 |
CPFX | -4.5367×106 | 1092.5257 | 1047.7872 | -4.5356×106 | -4.5357×106 |
LVFX | -3.0128×106 | 761.3897 | 728.1063 | -3.0120×106 | -3.0121×106 |
NFLX | -3.9301×106 | 851.0007 | 811.5053 | -3.9292×106 | -3.9293×106 |
[Cu(Ⅱ)-MXF]+ | -3.3133×106 | 850.6436 | 816.1997 | -3.3125×106 | -3.3125×106 |
[Cu(Ⅱ)-CPFX]+ | -4.2307×106 | 940.9031 | 900.4179 | -4.2297×106 | -4.2297×106 |
[Cu(Ⅱ)-LVFX]+ | -2.9129×106 | 751.8198 | 719.3949 | -2.9122×106 | -2.9122×106 |
[Cu(Ⅱ)-NFLX]+ | -3.8302×106 | 839.0074 | 799.9426 | -3.8294×106 | -3.8294×106 |
Table 2 Free energy of different species
Species | E/(kJ·mol-1) | Gcorr303 K /(kJ·mol-1) | Gcorr353 K/(kJ·mol-1) | G303 K/(kJ·mol-1) | G353 K/(kJ·mol-1) |
---|---|---|---|---|---|
Cu(H2O)42+ | -1.3195×106 | 17.6896 | 155.4664 | -1.3194×106 | -1.3194×106 |
H2O | -2.0055×106 | 6.7843 | -3.0981 | -2.0050×105 | -2.0055×106 |
H+ | 0 | 26.7801 | -32.3199 | -1.1703×103 | -1.1759×103 |
H3O | -2.0164×106 | 41.4566 | 31.1883 | -2.0164×105 | -2.0165×105 |
MXF | -3.6194×106 | 1001.6886 | 962.9651 | -3.6184×106 | -3.6184×106 |
CPFX | -4.5367×106 | 1092.5257 | 1047.7872 | -4.5356×106 | -4.5357×106 |
LVFX | -3.0128×106 | 761.3897 | 728.1063 | -3.0120×106 | -3.0121×106 |
NFLX | -3.9301×106 | 851.0007 | 811.5053 | -3.9292×106 | -3.9293×106 |
[Cu(Ⅱ)-MXF]+ | -3.3133×106 | 850.6436 | 816.1997 | -3.3125×106 | -3.3125×106 |
[Cu(Ⅱ)-CPFX]+ | -4.2307×106 | 940.9031 | 900.4179 | -4.2297×106 | -4.2297×106 |
[Cu(Ⅱ)-LVFX]+ | -2.9129×106 | 751.8198 | 719.3949 | -2.9122×106 | -2.9122×106 |
[Cu(Ⅱ)-NFLX]+ | -3.8302×106 | 839.0074 | 799.9426 | -3.8294×106 | -3.8294×106 |
Reaction | ΔG303 K/(kJ·mol-1) | ΔG353 K/(kJ·mol-1) |
---|---|---|
Cu(H2O)24 + + MXF → [Cu(Ⅱ)-MXF]+ + H2O + H3O+ Cu(H2O)24 + + CPFX → [Cu(Ⅱ)-CPFX]+ + H2O + H3O+ Cu(H2O)24 + + LVFX → [Cu(Ⅱ)-LVFX]+ + H2O + H3O+ Cu(H2O)24 + + NFLX → [Cu(Ⅱ)-NFLX]+ + H2O + H3O+ | -37.2117 | -41.9496 |
-39.1593 | -44.0952 | |
-36.6008 | -41.3660 | |
-42.3994 | -47.7637 | |
Cu(H2O)24 + + MXF → [Cu(Ⅱ)-MXF]+ + 2H2O + H+ Cu(H2O)24 + + CPFX → [Cu(Ⅱ)-CPFX]+ + 2H2O + H+ Cu(H2O)24 + + LVFX → [Cu(Ⅱ)-LVFX]+ + 2H2O + H+ Cu(H2O)24 + + NFLX → [Cu(Ⅱ)-NFLX]+ + 2H2O + H+ | -103.2055 | -113.1061 |
-105.1540 | -115.2516 | |
-102.5954 | -112.5224 | |
-108.3945 | -118.9202 |
Table 3 Free energy variation of the reactions
Reaction | ΔG303 K/(kJ·mol-1) | ΔG353 K/(kJ·mol-1) |
---|---|---|
Cu(H2O)24 + + MXF → [Cu(Ⅱ)-MXF]+ + H2O + H3O+ Cu(H2O)24 + + CPFX → [Cu(Ⅱ)-CPFX]+ + H2O + H3O+ Cu(H2O)24 + + LVFX → [Cu(Ⅱ)-LVFX]+ + H2O + H3O+ Cu(H2O)24 + + NFLX → [Cu(Ⅱ)-NFLX]+ + H2O + H3O+ | -37.2117 | -41.9496 |
-39.1593 | -44.0952 | |
-36.6008 | -41.3660 | |
-42.3994 | -47.7637 | |
Cu(H2O)24 + + MXF → [Cu(Ⅱ)-MXF]+ + 2H2O + H+ Cu(H2O)24 + + CPFX → [Cu(Ⅱ)-CPFX]+ + 2H2O + H+ Cu(H2O)24 + + LVFX → [Cu(Ⅱ)-LVFX]+ + 2H2O + H+ Cu(H2O)24 + + NFLX → [Cu(Ⅱ)-NFLX]+ + 2H2O + H+ | -103.2055 | -113.1061 |
-105.1540 | -115.2516 | |
-102.5954 | -112.5224 | |
-108.3945 | -118.9202 |
Complex | Bond length/nm | Mayer bond order | NPA charge | Ionization potential/eV | ||||
---|---|---|---|---|---|---|---|---|
Cu—Ow | Cu—Ocarboxyl | Cu—Ocarbonyl | Cu—Ow | Cu—Ocarboxyl | Cu—Ocarbonyl | Cu(Ⅱ) | ||
Cu(H2O)24 + | 0.1981 | — | — | 0.434 | — | — | 1.242 | 10.03 |
[Cu(Ⅱ)⁃MXF]+ | 0.2014 | 0.1877 | 0.1893 | 0.403 | 0.627 | 0.571 | 1.070 | 5.43 |
[Cu(Ⅱ)⁃CPFX]+ | 0.2010 | 0.1877 | 0.1894 | 0.402 | 0.626 | 0.568 | 1.072 | 5.25 |
[Cu(Ⅱ)⁃LVFX]+ | 0.2012 | 0.1877 | 0.1895 | 0.405 | 0.625 | 0.565 | 1.073 | 5.03 |
[Cu(Ⅱ)⁃NFLX]+ | 0.2013 | 0.1877 | 0.1898 | 0.404 | 0.627 | 0.570 | 1.071 | 5.26 |
Table 4 DFT calculation properties of different cupric complexes
Complex | Bond length/nm | Mayer bond order | NPA charge | Ionization potential/eV | ||||
---|---|---|---|---|---|---|---|---|
Cu—Ow | Cu—Ocarboxyl | Cu—Ocarbonyl | Cu—Ow | Cu—Ocarboxyl | Cu—Ocarbonyl | Cu(Ⅱ) | ||
Cu(H2O)24 + | 0.1981 | — | — | 0.434 | — | — | 1.242 | 10.03 |
[Cu(Ⅱ)⁃MXF]+ | 0.2014 | 0.1877 | 0.1893 | 0.403 | 0.627 | 0.571 | 1.070 | 5.43 |
[Cu(Ⅱ)⁃CPFX]+ | 0.2010 | 0.1877 | 0.1894 | 0.402 | 0.626 | 0.568 | 1.072 | 5.25 |
[Cu(Ⅱ)⁃LVFX]+ | 0.2012 | 0.1877 | 0.1895 | 0.405 | 0.625 | 0.565 | 1.073 | 5.03 |
[Cu(Ⅱ)⁃NFLX]+ | 0.2013 | 0.1877 | 0.1898 | 0.404 | 0.627 | 0.570 | 1.071 | 5.26 |
1 | Zeng X. C., Zhu J. F., Zhang G. H., Wu Z., Lu J. Y., Ji H. D., Chem. Eng. J., 2023, 468, 143536 |
2 | Schwarzenbach R. P., Escher B. I., Fenner K., Hofstetter T. B., Johnson C. A., von Gunten U., Wehrli B., Science, 2006, 313(5790), 1072—1077 |
3 | Yang X. B., Zeng X. C., Chen H. C., Xin L., Pan J. J., Ji H. D., Cheng K. J., Chem. Eng. J., 2024, 483, 148697 |
4 | Mulchandani R., Wang Y., Gilbert M., Van Boeckel T. P., Nature News, 2023, 3, e0001305 |
5 | Wu J. Y., Gao J. M., Guo J. S., Hou X. Y., Wang D. R., Wu J. C., Li X. J., Jia C. Y., J. Hazard. Mater., 2023, 445, 130570 |
6 | Zhang Q. Q., Ji X. M., Tian G. M., Jin R. C., Bioresource Technol., 2021, 319, 124106 |
7 | Li J. Y., Pham A. N., Dai R., Wang Z. W., Waite T. D., J. Hazard. Mater., 2020, 392, 122261 |
8 | Zeng X. C., Zhang G. H., Wen J., Li X. L., Zhu J. F., Wu Z., Chemosphere, 2023, 318, 137869 |
9 | Chen J. B., Zhou X. F., Sun P. Z., Zhang Y. L., Huang C. H., Environ. Sci. Technol., 2019, 53(20), 11774—11782 |
10 | Miao J., Song J., Lang J. Y., Zhu Y., Dai J., Wei Y., Long M. C., Zhou B. X., Alvarez P. J. J., Zhang L. Z., Environ. Sci. Technol., 2023, 57, 4266—4275 |
11 | Wang S. C., Deng Y., Shao B. B., Zhu J. H., Hu Z. X., Guan X. H., Environ. Sci. Technol., 2021, 55, 11338—11347 |
12 | Zhu J. H., Yu F. L., Meng J. R., Shao B. B., Dong H. Y., Chu W. H., Cao T. C., Wei G.F., Wang H. J., Guan X. H., Environ. Sci. Technol., 2021, 54, 9702—9710 |
13 | Sun S. H., Shan C., Yang Z. C., Wang S., Pan B. C., Environ. Sci. Technol., 2022, 56, 637—641 |
14 | Ahmed Y., Zhong J. X., Yuan Z. G., Guo J. H., Water Res., 2021, 197, 117075 |
15 | Wang L. H., Xu H. D., Jiang N., Wang Z. M., Jiang J., Zhang T., Environ. Sci. Technol., 2020, 54, 4686—4694 |
16 | Lee H. S., Lee H. J., Seo J. W., Kim H. E., Shin Y. K., Kim J. H., Lee C. H., Environ. Sci. Technol., 2016, 50, 8231—8238 |
17 | Yang Y. X., Zhu J. F., Zeng Q. Z., Zeng X. C., Zhang G. H., Niu Y. H., J. Taiwan Inst. Chem. E, 2023, 145, 104775 |
18 | Zeng X. C., Zhang G. H., Zhu J. F., J. Environ. Manage., 2022, 314, 114979 |
19 | Sun J. S., Chen P., Jing L. P., Sun F. X., Liu J., Chem. J. Chinese Universities, 2022, 43(10), 20220171 |
孙金时, 陈鹏, 景丽萍, 孙福兴, 刘佳. 高等学校化学学报, 2022, 43(10), 20220171 | |
20 | Zeng Q. Z., Zhu J. F., Xiong J. J., Zha W., Liu J. H., Zeng X. C., Zhang G. H., J. Environ. Chem. Eng., 2024, 12, 114302 |
21 | Liu J. H., Zhu J. F., Ma X., Zeng X. C., Zhang G. H., Sun Y. H., Fan G. D., Appl. Surf. Sci., 2025, 680, 161416 |
22 | Li L. L., Liu Y., Song S. Y., Zhang H. J., Acta Chim. Sinica, 2022, 80, 16 |
李玲玲, 刘宇, 宋术岩, 张洪杰, 化学学报, 2022, 80, 16 | |
23 | Yuan Z. X., Zhang H., Hu S. J., Zhang B. T., Zhang J. J., Cui G. L., Acta Chim. Sinica, 2023, 81, 10649 |
苑志祥, 张浩, 胡思伽, 张波涛, 张建军, 崔光磊, 化学学报, 2023, 81, 1064 | |
24 | Zeng X. C., Qin Y., Yang X. B., Zhou J. M., Pan J. J., Luo S. M., Cheng K. J. J., Hazard. Mater., 2024, 1368, 136266 |
25 | Sun S. H., Wang S., Ye Y. X., Pan B. C., Water Res., 2019, 153, 21—28 |
26 | Wu S. Y., Wu W., Fan J. N., Zhang L. P., Zhong Y., Xu H., Mao Z. P., Water Res., 2023, 233, 119725 |
27 | Zhang J., Shan C., Zhang W. M., Pan B. C., PNAS, 2023, 120, e2305255120 |
28 | Cai X. L., Wu L. Y., Li Y. M., Lei S. H., Xu J., Lyu H., Li J. D., Wang H. J., Dong X. Z., Zhu Y. X., Wang G. L., J. Hazard. Mater., 2023, 459, 132080 |
29 | Zhang H. Q., Quan H. T., Yin S. Z., Sun L. P., Lu H., Environ. Sci. Technol., 2022, 56, 15941—15952 |
30 | He L. Y., Yang S. D., Shen S. T., Ma Y. F., Chen Y. L., Xue J. M, Wang J., Zheng L., Wu L., Zhang Z. L., Yang L., J. Hazard. Mater., 2022, 434, 128860 |
31 | Zheng J. L., Lin Q. T., Liu Y. X., Deng Y. R., Fan X. D., Xu K. H., Ma Y. J., He J., J. Hazard. Mater., 2024, 462, 132753 |
32 | Ma S. Q., Chen D. M., Zhong Y., Feng Y. M., He Z. T., He We. B., Zhang Y. M., Ding H., Wu X. F., Chem. Eng. J., 2023, 467, 143385 |
33 | Wang Y. S., Jiao H., Liu Z. J., Yang S. J., Chen R. Z., Liu C. G., Dai J., Ding D. H., J. Hazard. Mater., 2024, 472, 134530 |
34 | Wang Z., Jiang J., Pang S. Y., Zhou Y., Guan C. T., Gao Y., Li J., Yang Y., Qiu W., Jiang C. C., Environ. Sci. Technol., 2018, 52, 11276—11284 |
35 | Dong Y. W., Huang W. Y., Liang C., Gao Y. F., Wei Z. S., Meng L. J., Zhong F., Zhang J., Zhou L., Xu J. J., Water Process. Eng., 2024, 58, 104929 |
36 | Pham A. N., Xing G. W., Miller C. J., Waite T. D., J. Catal., 2013, 301, 54—64 |
37 | Lee H. S., Lee H. J., Sedlak D. L., Lee C. H., Chemosphere, 2013, 92, 652—658 |
38 | Wang J. L., Wang S. Z., Chem. Eng. J., 2018, 334, 1502—1517 |
39 | Zeng X. C., Zhang G. H., Zhu J. F., Wu Z., Environ. Sci. Wat. Res., 2022, 8, 907—925 |
40 | Duan R., Ma S. L., Xu,S. J., Wang B. B., He M. F., Li G. X., Fu H. C., Zhao P., Water Res., 2022, 218, 118489 |
41 | Bhatt S., Chatterjee S., Environ. Pollut., 2022, 315, 120440 |
42 | Ren Y., Shi M. Q., Zhang W. M., Dionysiou D. D., Lu J. H., Shan C., Zhang Y. Y., Lv L., Pan B. C., Environ. Sci. Technol., 2020, 54, 5258—5267 |
[1] | ZHOU Hai, CHEN Hao, GUO Ya, KANG Min. Synthesis of Meso-porous Co3O4 Polyhedra and Their Electrochemical Properties [J]. Chem. J. Chinese Universities, 2019, 40(7): 1374. |
[2] | LIU Zile, ZENG Zequan, YANG Jieyang, CUI Yan, WU Ailian, LI Zhe, HUANG Zhanggen. Degradation of Phenol with Persulfate Activated by Surface Modified Activated Carbon† [J]. Chem. J. Chinese Universities, 2017, 38(7): 1241. |
[3] | SONG Jun Feng, HE Ping, GUO Wei . Studies on Both Voltammetric Behavior and Polarographic Catalytic Wave of Antitumor Irisquinone [J]. Chem. J. Chinese Universities, 2003, 24(4): 599. |
[4] | CHEN Jia-Fu, CHU Gao-Sheng, GE Xue-Wu, ZHANG Zhi-Cheng, YAO Si-De . Studies of Vitamin K by Pulse Radiolysis and Laser Photolysis(Ⅱ)——Time-resolved Studies of Oxidation Reactions of VK3 in Aqueous Solution [J]. Chem. J. Chinese Universities, 1998, 19(11): 1829. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||