Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (5): 20240033.doi: 10.7503/cjcu20240033
• Organic Chemistry • Previous Articles Next Articles
REN Chuanqing(), JI Xiaohui, ZHANG Qiang, CAO Xiaoyan, JI Jianwei, LIU Bo
Received:
2024-01-19
Online:
2024-05-10
Published:
2024-03-06
Contact:
REN Chuanqing
E-mail:rcqing2008@126.com
Supported by:
CLC Number:
TrendMD:
REN Chuanqing, JI Xiaohui, ZHANG Qiang, CAO Xiaoyan, JI Jianwei, LIU Bo. Synthesis of Thieno[2,3-b]thiopyran-4-one Derivatives by Palladium Catalysts[J]. Chem. J. Chinese Universities, 2024, 45(5): 20240033.
Entry | Substrate | R1 | R2 | Time/h | Product | Yield(%) |
---|---|---|---|---|---|---|
1 | 1a | Ph | Ph | 8.0 | 2a | 86 |
2 | 1b | 4⁃CH3OPh | Ph | 7.5 | 2b | 87 |
3 | 1c | 4⁃CH3Ph | Ph | 7.0 | 2c | 83 |
4 | 1d | 2⁃ClPh | Ph | 9.0 | 2d | 79 |
5 | 1e | 4⁃ClPh | Ph | 9.0 | 2e | 81 |
6 | 1f | PhCH=CH | Ph | 8.0 | 2f | 76 |
7 | 1g | 3,4⁃O2CH2Ph | Ph | 10 | 2g | 80 |
8 | 1h | 2⁃Thienyl | Ph | 8.5 | 2h | 72 |
9 | 1i | 2⁃Furyl | Ph | 8.5 | 2i | 78 |
10 | 1j | t⁃Bu | Ph | 8.0 | 2j | 68 |
11 | 1k | Ph | 4⁃COOCH3Ph | 8.5 | 2k | 82 |
12 | 1l | Ph | 4⁃CH3Ph | 7.5 | 2l | 86 |
Table 1 Study of substrate scope
Entry | Substrate | R1 | R2 | Time/h | Product | Yield(%) |
---|---|---|---|---|---|---|
1 | 1a | Ph | Ph | 8.0 | 2a | 86 |
2 | 1b | 4⁃CH3OPh | Ph | 7.5 | 2b | 87 |
3 | 1c | 4⁃CH3Ph | Ph | 7.0 | 2c | 83 |
4 | 1d | 2⁃ClPh | Ph | 9.0 | 2d | 79 |
5 | 1e | 4⁃ClPh | Ph | 9.0 | 2e | 81 |
6 | 1f | PhCH=CH | Ph | 8.0 | 2f | 76 |
7 | 1g | 3,4⁃O2CH2Ph | Ph | 10 | 2g | 80 |
8 | 1h | 2⁃Thienyl | Ph | 8.5 | 2h | 72 |
9 | 1i | 2⁃Furyl | Ph | 8.5 | 2i | 78 |
10 | 1j | t⁃Bu | Ph | 8.0 | 2j | 68 |
11 | 1k | Ph | 4⁃COOCH3Ph | 8.5 | 2k | 82 |
12 | 1l | Ph | 4⁃CH3Ph | 7.5 | 2l | 86 |
Entry | Catalyzer(molar fraction, %) | Base(mmol) | Solvent | Temperature/℃ | Time/h | Yield(%) |
---|---|---|---|---|---|---|
1 | Pd(OAc)2(20) | K2CO3(1.2) | DMF | r.t. | 8 | 0 |
2 | Pd(OAc)2(20) | K2CO3(1.2) | DMF | 60 | 8 | 76 |
3 | Pd(OAc)2(20) | K2CO3(1.2) | DMF | 100 | 8 | 81 |
4 | Pd(OAc)2(30) | K2CO3(1.2) | DMF | 100 | 8 | 86 |
5 | Pd(OAc)2(30) | K2CO3(2.0) | DMF | 100 | 8 | 83 |
6 | PdCl3(30) | K2CO3(1.2) | DMF | 100 | 8 | 63 |
7 | Cu(OAc)2(30) | K2CO3(1.2) | DMF | 100 | 8 | 0 |
8 | Ag(OAc)2(30) | K2CO3(1.2) | DMF | 100 | 8 | 0 |
9 | Pd(OAc)2(30) | K2CO3(1.2) | DMF | 100 | 12 | 84 |
10 | Pd(OAc)2(30) | NaOH(1.2) | DMF | 100 | 8 | 53 |
11 | Pd(OAc)2(30) | N(C2H5)3(1.2) | DMF | 100 | 8 | 0 |
12 | Pd(OAc)2(30) | K2CO3(1.2) | CH2Cl2 | Reflux | 8 | 0 |
13 | Pd(OAc)2(30) | K2CO3(1.2) | DMSO | 100 | 8 | 78 |
14 | Pd(OAc)2(30) | K2CO3(1.2) | CH3CH2OH | Reflux | 8 | 38 |
Table 2 Reaction conditions optimization for the synthesis of compound 2a*
Entry | Catalyzer(molar fraction, %) | Base(mmol) | Solvent | Temperature/℃ | Time/h | Yield(%) |
---|---|---|---|---|---|---|
1 | Pd(OAc)2(20) | K2CO3(1.2) | DMF | r.t. | 8 | 0 |
2 | Pd(OAc)2(20) | K2CO3(1.2) | DMF | 60 | 8 | 76 |
3 | Pd(OAc)2(20) | K2CO3(1.2) | DMF | 100 | 8 | 81 |
4 | Pd(OAc)2(30) | K2CO3(1.2) | DMF | 100 | 8 | 86 |
5 | Pd(OAc)2(30) | K2CO3(2.0) | DMF | 100 | 8 | 83 |
6 | PdCl3(30) | K2CO3(1.2) | DMF | 100 | 8 | 63 |
7 | Cu(OAc)2(30) | K2CO3(1.2) | DMF | 100 | 8 | 0 |
8 | Ag(OAc)2(30) | K2CO3(1.2) | DMF | 100 | 8 | 0 |
9 | Pd(OAc)2(30) | K2CO3(1.2) | DMF | 100 | 12 | 84 |
10 | Pd(OAc)2(30) | NaOH(1.2) | DMF | 100 | 8 | 53 |
11 | Pd(OAc)2(30) | N(C2H5)3(1.2) | DMF | 100 | 8 | 0 |
12 | Pd(OAc)2(30) | K2CO3(1.2) | CH2Cl2 | Reflux | 8 | 0 |
13 | Pd(OAc)2(30) | K2CO3(1.2) | DMSO | 100 | 8 | 78 |
14 | Pd(OAc)2(30) | K2CO3(1.2) | CH3CH2OH | Reflux | 8 | 38 |
1 | Kelber C., Berichte Der Deutschen Chemischen Gesellschaft, 1910, 43, 1252—1259 |
2 | Huang L. F., Wu J. J., Hu J. G., Bi Y. C., Huang D. Y., Tetrahedron Lett., 2019, 61(4), 151363 |
3 | Liu Q., J. Northeast Normal Univ.(Nat. Sci. Ed.), 2020, 52(3), 14—26 |
刘群, 东北师大学报(自然科学版), 2020, 52(3), 14—26 | |
4 | Pan L., Liu Q., Synlett, 2011, 8, 1073—1080 |
5 | Wang M. M., Kong L. H., Wu Q. Y., Li X. W., Org. Lett., 2018, 20(15), 4597—4600 |
6 | Shaw R., Prakash P., Althagafi I., Giri N. G., Pratap R., RSC Adv., 2023 ,13(48),34299—34307 |
7 | Wang M., Han F., Yuan H. J., Liu Q., Chem. Commun., 2010, 46(13), 2247—2249 |
8 | Yu H. F., Zhang Z.Y., Zhang X., Xu Y. P., Huo D. Y., Zhang L. Y., Wang W. J., J. Org. Chem., 2022, 87(5), 2985—2996 |
9 | Shally, Althagafi I., Shaw R., Elagamy A., Kumar A., Pratap R., Org. Biomol. Chem., 2020,18(32), 6407—6417 |
10 | Zhao X. B., Wang Y. M., Yu H. F., Lv Y. C., Jiang S. A., Wang N., Tetrahedron, 2021, 97, 132427 |
11 | Wang M. S., Shi L., Li Y. F., Liu Q., Pan L., J. Org. Chem., 2019, 84(15), 9603—9610 |
12 | Liu Z, Wang Y. K., Huo J. F., Li X. J., Li S. N., Song X. N., J. Org. Chem., 2021, 86(8), 5506—5517 |
13 | Zhang X. X., Chang J., Chen C., Zhai Q. Q., Li S. N., Song X. N., Adv. Synth. Catal., 2023, 365(21), 3622—3628 |
14 | Zheng B. H., Li X. T., Song Y., Meng S. Y., Li Y. F., Liu Q., Pan L., Org. Lett., 2021, 23(9), 3453—3459 |
15 | Xue J., Bai L. G., Zhang L., Zhou Y., Lin X. L., Mou N. J., Xiao D. R., Luo Q. L., J. Org. Chem., 2020, 85(15), 9761—9775 |
16 | Bekturhum B., Wang M., Han F., Liu Q., Chem. J. Chinese Universities, 2010, 31(4), 727—730 |
巴哈尔古丽·别克吐尔逊, 王芒, 韩锋, 刘群. 高等学校化学学报, 2010, 31(4), 727—730 | |
17 | Wang W., Zhang Z. Y., Zhang X., Yu H. F., Luo H., Huo D. Y., Xu Y. P., Zhao X. B., Chin. J. Org. Chem., 2023, 43(2), 742—750 |
王维, 张哲宇, 张雪, 于海丰, 罗辉, 霍东月, 徐玉澎, 赵晓波. 有机化学, 2023, 43(2), 742—750 | |
18 | Li Y. F., Xu X. X., Shi H., Pan L., Liu Q., J. Org. Chem., 2014, 79(12), 5929—5933 |
19 | Ming W. B., Liu X. C., Wang L. J., Liu J., Wang M., Org. Lett., 2015, 17(7), 1746—1749 |
20 | Bayat M., Nasri S., Tetrahedron Lett., 2017, 58(32), 3107—3111 |
21 | Tang L., Yang Q., Zhang J. F., Deng G. S., J. Org. Chem., 2020, 85(4), 2575—2584 |
22 | Xu Q., Zheng B. H., Zhou X. X., Pan L., Liu Q., Li Y. F., Org. Lett., 2020, 22(5), 1692—1697 |
23 | Wu P., Wang L. D., Wu K. K., Yu Z. K., Org. Lett., 2015, 17(4), 868—871 |
24 | Cheng D. P., Wu L. J., Deng Z. T., Xu X. L., Yan J. Z., Adv. Synth. Catal., 2017, 359(24), 4317—4321 |
25 | Yu H. F., Zhao L. J., Diao Q. P., Li T. C., Liao P. Q., Hou D. Y., Xin G., Synlett., 2017, 28(14), 1828—1834 |
26 | Gu Q. Y., Cheng Z. F., Zeng X. B., Chin. J. Org. Chem., 2022, 42(5), 1537—1544 |
顾清云, 程振凤, 曾小宝. 有机化学, 2022, 42(5), 1537—1544 | |
27 | Armitt D. J., Bruce M. I., Skelton B. T., White A. H., Organometallics, 2008, 27(14), 3556—3563 |
28 | Verma G. K., Verma R. K., Singh M. S., RSC Adv., 2013, 3(1), 245—252 |
29 | Fujisaki J., Matsumoto K., Matsumoto K., Katsuki T., J. Am. Chem. Soc., 2011, 133(1), 56—61 |
30 | Guo Y., Lin K., Xie K. Q., Liu S., Chem. J. Chinese Univerties, 2021, 42(9), 2798—2804 |
郭阳, 林凯, 谢凯强, 刘晟. 高等学校化学学报, 2021, 42(9), 2798—2804 | |
31 | Kozack C. V., Tereniak S. J., Jaworski J. N., Li B., Bruns D. L., Knapp S. M. M., Landis C. R., Stahl S. S., ACS Catal., 2021, 11(11), 6363—6370 |
32 | Li H., Ma X. L., Zhang B. H., Lei M., Organometallics, 2016, 35(19), 3301—3310 |
33 | Li G. C., Zhou G. S., Zhang⁃Negrerie D., Du Y. F., Huang J. H., Zhao K., Adv. Synth. Catal., 2016, 358(22), 3534—3540 |
34 | Yu S. Y., Zhang H., Gao Y., Mo L., Wang S. Z., Yao Z. J., J. Am. Chem. Soc., 2013, 135(30), 11402—11407 |
35 | Lou J., Ma J., Xu B. H., Zhou Y. G., Yu Z. K., Org. Lett., 2020, 22(13), 5202—5206 |
36 | Wang H., Zhao Y. L., Ren C. Q., Diallo A., Liu Q., Chem. Commun., 2011, 47(45), 12316—12318 |
37 | Han X. D., Ren C. Q., Fu J. P., Xiong W., Wang H. B., Dong X. N., Ji J. W., Hu J. W., Synthesis⁃Stuttgart, 2017, 49(20), 4703—4710 |
38 | Ren C. Q., Kou G. X., Shao X. Z., Ji X. H., Ji J. W., Zhang Q., Chem. Res. Appl., 2022, 34(6), 1411—1416 |
任传清, 寇高翔, 邵先钊, 季晓晖, 季建伟, 张强. 化学研究与应用, 2022, 34(6), 1411—1416 | |
39 | Ren C. Q., Ji J. W., Zhang Q., Liu J., Chemical Reagents, 2019, 41(8), 842—845 |
任传清, 季建伟, 张强, 刘杰. 化学试剂, 2019, 41(8), 842—845 | |
40 | Ren C. Q., Ji X. H., Ji J. W., Zhang Q., Chem. J. Chinese Universities, 2023, 44(6), 20230073 |
任传清, 季晓晖, 季建伟, 张强. 高等学校化学学报, 2023, 44(6), 20230073 | |
41 | Ren C. Q., Zhang W., Ji J. W., Zhang Q., Chem. Res. Appl., 2020, 32(7), 1284—1288 |
任传清, 张伟, 季建伟, 张强. 化学研究与应用, 2020, 32(7), 1284—1288 |
[1] | YANG Wei, LIU Jiaqi, TANG Cuiman, ZHANG Haonan, WANG Bingbing, SUN Zhong, XU Xiaohui. Copper-catalyzed Synthesis of Amides from Alcohols and Aminopyridines Under Aerobic Conditions [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230029. |
[2] | GUO Yang, LIN Kai, XIE Kaiqiang, LIU Sheng. Novel Approach to Isatins via Pd-Cu Catalyzed Oxidative Transformation [J]. Chem. J. Chinese Universities, 2021, 42(9): 2798. |
[3] | SO Chauming, YUEN Onying, KWONG Fukyee, CHEN Chihchiang, PAI Chengchao, SUN Raymond Waiyin. Application of CM-Phos Ligand in Palladium-catalyzed Cross-coupling Reactions† [J]. Chem. J. Chinese Universities, 2020, 41(10): 2185. |
[4] | WEN Jing, XU Zhimin, QI Desheng, WANG Jiayu, YU Shuangjiang, HE Chaoliang, HAN Bing. PLG-g-TA/RGD Enzyme-catalyzed Crosslinked Hydrogel for Adhesion and Three-dimensional Culture of Hyaline Chondrocytes † [J]. Chem. J. Chinese Universities, 2019, 40(9): 2020. |
[5] | DONG Lirong,WANG Siyu,ZHANG Xiaomei,CHENG Jiajia,YUAN Yaofeng. High Efficiency Catalytic Synthesis of N-Sulfonyltriazole in Aqueous Phase by Copper Sulfate/Substituted Thiourea† [J]. Chem. J. Chinese Universities, 2019, 40(5): 927. |
[6] |
WANG Rui, LI Yili, FENG Xukai, SONG Liang, ZHANG Tianlei, WANG Zhuqing, JIN Lingxia, ZHANG Qiang, XU Qiong, WANG Zhiyin.
Catalytic Effect of n(H2O)(n=1,2) on the Reaction of HO2+NO |
[7] | LUO Minghong, XIA Kejian, ZHOU Guanghua, GE Wen. Synthesis of Pd/PEI-GNs Composites as Electrocatalyst for Reduction of p-Nitrophenol† [J]. Chem. J. Chinese Universities, 2016, 37(12): 2268. |
[8] | XU Qiong, WANG Rui, ZHANG Tianlei, ZHANG Haolin, WANG Zhiyin, WANG Zhuqing. Theoretical Studies on the Single Water Molecule’s Effect on the Main Channel of H2S+HO2 Reaction† [J]. Chem. J. Chinese Universities, 2014, 35(10): 2191. |
[9] | LI Xing-Jian, HU Jing, SUN Dao-Xing, ZHANG Yi-Heng. Synthesis and Properties of Intermolecular Self-crosslinking Organic-inorganic Hybrid Waterborne Polyurethane Based on CuAAC Reaction [J]. Chem. J. Chinese Universities, 2013, 34(12): 2871. |
[10] | YU Hai-Feng, LIAO Pei-Qiu. Odorless and Efficient Thioacetalization Reaction of Oximes [J]. Chem. J. Chinese Universities, 2012, 33(09): 1969. |
[11] | QIAN Ying*, Lü Xin-Ming, ZHOU Zhi-Qiang, CUI Yi-Ping. Multiphoton Pumped Green Fluorescence in a Hyperbranched Triphenylamine-oxadiazole Conjugated Polymer [J]. Chem. J. Chinese Universities, 2011, 32(10): 2441. |
[12] | BEKTURHUM Bahargul, WANG Mang*, HAN Feng, LIU Qun. Selective α-Bromination of Functionalized Ketene Dithioacetals [J]. Chem. J. Chinese Universities, 2010, 31(4): 727. |
[13] | LIU Shu-Sheng, SUN Li-Xian, SONG Li-Fang, JIANG Chun-Hong, ZHANG Jian, .... Effect of TiF3 on the Dehydrogenation of LiAlH4 [J]. Chem. J. Chinese Universities, 2010, 31(4): 796. |
[14] | PENG Xiao-Hong*, PAN Qin-Min*, Garry L. Rempel, PENG Xiao-Chun. Studies on Regioselective Catalyzed Modification of Poly(methylhydrosiloxane) Using Quaternized Poly(amidoamine) Dendrimer-Encapsulated RuRh Bimetallic Nanoparticles [J]. Chem. J. Chinese Universities, 2009, 30(4): 813. |
[15] | AI Chun-Zhi1,2, SUN Ren-An1*, WANG Chang-Sheng1, MA Lin1, YANG Ling2. Theoretical Studies on Hydrogen overfall Mechanism for Catalyzed Hydroisomerization of n-Hexane [J]. Chem. J. Chinese Universities, 2008, 29(1): 182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||