Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (10): 20240272.doi: 10.7503/cjcu20240272
• Article: Inorganic Chemistry • Previous Articles Next Articles
JIANG Jiaqi1, YANG Hongxia1, YAN Mengfei1, SHI Xinyao1, LI Jiaqi1, JIANG Yucheng1,2()
Received:
2024-06-04
Online:
2024-10-10
Published:
2024-08-12
Contact:
JIANG Yucheng
E-mail:jyc@snnu.edu.cn
Supported by:
CLC Number:
TrendMD:
JIANG Jiaqi, YANG Hongxia, YAN Mengfei, SHI Xinyao, LI Jiaqi, JIANG Yucheng. Construction of Efficient Bienzyme Cascade Catalytic System by “Yolk-shell” Structure[J]. Chem. J. Chinese Universities, 2024, 45(10): 20240272.
Element | ZIF⁃8 | COP@ZIF⁃8 | ZIF-8@GOx@ZIF-67-CPO@ZIF-8 | ZIF-8@GOx⁃CPO@ZIF-8 | ||||
---|---|---|---|---|---|---|---|---|
Mass fraction | Atomic fracrion | Mass fraction | Atomic fracrion | Mass fraction | Atomic fracrion | Mass fraction | Atomic fracrion | |
C | 46.31 | 60.80 | 48.68 | 60.46 | 49.09 | 62.54 | 59.06 | 68.21 |
N | 27.54 | 31.00 | 31.70 | 33.76 | 22.35 | 24.41 | 20.41 | 20.30 |
O | 2.55 | 2.51 | 1.86 | 1.73 | 8.60 | 8.23 | 10.67 | 9.29 |
Zn | 23.60 | 5.69 | 17.75 | 4.05 | 13.86 | 3.24 | 5.82 | 1.24 |
Co | — | — | — | — | 6.09 | 1.58 | 4.04 | 0.96 |
Table 1 Results of EDS analysis of different enzyme reactors
Element | ZIF⁃8 | COP@ZIF⁃8 | ZIF-8@GOx@ZIF-67-CPO@ZIF-8 | ZIF-8@GOx⁃CPO@ZIF-8 | ||||
---|---|---|---|---|---|---|---|---|
Mass fraction | Atomic fracrion | Mass fraction | Atomic fracrion | Mass fraction | Atomic fracrion | Mass fraction | Atomic fracrion | |
C | 46.31 | 60.80 | 48.68 | 60.46 | 49.09 | 62.54 | 59.06 | 68.21 |
N | 27.54 | 31.00 | 31.70 | 33.76 | 22.35 | 24.41 | 20.41 | 20.30 |
O | 2.55 | 2.51 | 1.86 | 1.73 | 8.60 | 8.23 | 10.67 | 9.29 |
Zn | 23.60 | 5.69 | 17.75 | 4.05 | 13.86 | 3.24 | 5.82 | 1.24 |
Co | — | — | — | — | 6.09 | 1.58 | 4.04 | 0.96 |
Enzyme⁃(Carrier) | Recycle times | Relative activity(%) | Ref. |
---|---|---|---|
CBH&EG&BGL⁃(SA@yeast) | 7 | 75.0 | [ |
P450&GDH⁃(MENCs) | 5 | 67.0 | [ |
FDH&BDH⁃(SiO2) | 8 | 51.7 | [ |
Xylan&FPase⁃(chitosan) | 8 | 23.0 | [ |
Xylan&&Lichenase⁃(SiO2) | 10 | 68.0 | [ |
GOx&CPO⁃(ZIF⁃8) | 20 | 72.0 | This work |
Table 2 Contrast of the reusability of different enzyme reactors
Enzyme⁃(Carrier) | Recycle times | Relative activity(%) | Ref. |
---|---|---|---|
CBH&EG&BGL⁃(SA@yeast) | 7 | 75.0 | [ |
P450&GDH⁃(MENCs) | 5 | 67.0 | [ |
FDH&BDH⁃(SiO2) | 8 | 51.7 | [ |
Xylan&FPase⁃(chitosan) | 8 | 23.0 | [ |
Xylan&&Lichenase⁃(SiO2) | 10 | 68.0 | [ |
GOx&CPO⁃(ZIF⁃8) | 20 | 72.0 | This work |
Enzyme | Dye type | Degradation rate(%) | Ref. |
---|---|---|---|
Ligninolytic enzyme | Congo red | 96 | [ |
Laccase | RB5 | 93 | [ |
NADH⁃DCIP | Orange T4LL | 90 | [ |
Laccase | RBBR | 94 | [ |
GOx⁃CPO | Orange G | 98 | This work |
Table 2 Comparison of decolorization efficiency data of dyes
Enzyme | Dye type | Degradation rate(%) | Ref. |
---|---|---|---|
Ligninolytic enzyme | Congo red | 96 | [ |
Laccase | RB5 | 93 | [ |
NADH⁃DCIP | Orange T4LL | 90 | [ |
Laccase | RBBR | 94 | [ |
GOx⁃CPO | Orange G | 98 | This work |
1 | Nielsen J., Science, 2015, 349(6252), 1050—1051 |
2 | Wheeldon I., Minteer S. D., Banta S., Barton S. C., Atanassov P., Sigman M., Nat. Chem., 2016, 8, 299—309 |
3 | Lim S. I., Yang B., Jung Y., Cha J., Cho J., Choi E. S., Kim Y. H., Kwon I., Sci. Rep., 2016, 6, 39587 |
4 | Feng D., Liu T. F., Su J., Bosch M., Wei Z., Wan W., Yuan D., Chen Y. P., Wang X., Wang K., Lian X., Gu Z. Y., Park J., Zou X., Zhou H. C., Nat. Commun., 2015, 6, 5979 |
5 | Sun X. H., Han J., Guo R., Front. Chem., 2020, 8, 606044 |
6 | Jia Y. L., Yin G. L., Lin Y. H., Ma Y., Inorg. Chem. Commun., 2022, 136, 109137 |
7 | Chiang C. Y., Zhou W., RSC Adv., 2021, 11(47), 29108—29114 |
8 | Yuan S., Feng L., Wang K., Pang J., Bosch M., Lollar C., Sun Y., Qin J., Yang X., Zhang P., Wang Q., Zou L., Zhang Y., Zhang L., Fang Y., Li J., Zhou H. C., Adv. Mater., 2018, 30(37), 1704303 |
9 | Lian X., Fang Y., Joseph E., Wang Q., Li J., Banerjee S., Lollar C., Wang X., Zhou H. C., Chem. Soc. Rev., 2017, 46(11), 3386—3401 |
10 | Zhang Y., Lai L., Liu Y., Chen B., Yao J., Zheng P., Pan Q., Zhu W., ACS Appl. Mater. Interfaces, 2022, 14(5), 6453—6464 |
11 | Morris D. R., Hager L. P., J. Bio. Chem., 1966, 241(8), 1763—1768 |
12 | Hager L. P., Morris D. R., Brown F. S., Eberwein H., J. Bio. Chem., 1966, 241(8), 1769—1777 |
13 | Li Y. H., Zhou H., Dai L. M., Liu D. H., Al⁃Zuhair S., Du W., ACS Omega, 2022, 7(1), 274—280 |
14 | Shieh F. K., Wang S. C., Yen C. I., Wu C. C., Dutta S., Chou L. K., Morabito J. V., Hu P., Hsu M. H., Wu K. C. W, Tsung C. K., J. Am. Chem. Soc., 2015, 137(13), 4276—4279 |
15 | Man T. T., Xu C. X., Liu X. Y., Li D., Tsung C. K., Hao P., Wan Y., Li L., Nat. Commun., 2022, 13, 305 |
16 | Rösler C., Aijaz A., Turner S., Filippousi M., Shahabi A., Xia W., Van Tendeloo G., Muhler M., Fischer R. A., Chem. Eur. J., 2016, 22(10), 3304—3311 |
17 | Park J. B., Clark D. S., Biotechnol. Bioeng., 2006, 93(6), 1190—1195 |
18 | Jin R. X., Li C. N., Zhi L. F., Jiang Y. C., Hu M. C., Li S. N., Zhai Q. G., Carbohyd. Res., 2013, 370, 72—75 |
19 | Yin W. H., Wang X. P., Liao Y., Ma L. X., Qiao J., Liu H., Song X., Liu Y., Front. Bioeng. Biotechnol., 2022, 10, 849542 |
20 | Yin L., Guo X., Liu L., Zhang Y., Feng Y., ACS Biomater. Sci. Eng., 2018, 4(6), 2095—2099 |
21 | Peng F., Chen Q. S., Zong M. H., Lou W. Y., Mol. Catal., 2021, 510, 111673 |
22 | Amaro⁃Reyes A., Díaz⁃Hernández A., Gracida J., García⁃Almendárez B. E., Escamilla⁃García M., Arredondo⁃Ochoa T., Regalado C., Catalysts, 2019, 9(11), 966 |
23 | Ge H. H., Liu X., Yuan H., Zhang G. Y., Enzyme. Microb. Technol., 2023, 164, 110169 |
24 | Zhang J., Feng M., Jiang Y., Hu M., Li S., Zhai Q., Chem. Eng. J., 2012, 191, 236—242 |
25 | Olajuyigbe F. M., Afere F. P., Adetuyi O. Y., Fatokun C. O., Biocatal. Biotransformation, 2022, 40(5), 351—364 |
26 | Wang H. R., Han S. R., Wang J. Y., Yu S. Y., Li X. Y., Lu L., Bioprocess Biosyst. Eng., 2021, 44(4), 727—735 |
27 | Dawkar V. V., Jadhav U. U., Tamboli D. P., Govindwar S. P., Ecotoxicol. Environ. Saf., 2010, 73(7), 1696—1703 |
28 | Lu L., Zhao M., Zhang B. B., Yu S. Y., Bian X. J., Wang W., Wang Y., Appl. Microbiol. Biotechnol., 2007, 74, 1232—1239 |
[1] | HUANG Yuqing, LIU Yan, ZHANG Hongli, LIN Sen, SUN Shiyong, GOLUBEV Evgeny, LYU Rui, KOTOVA Olga, KOTOVA Elena. Construction of GOx@Fe3O4-HNTs Microcapsule Reactor and Its Multi-enzyme Cascade Catalytic Performance [J]. Chem. J. Chinese Universities, 2024, 45(1): 20230403. |
[2] | LI Liu, SUN Shiyong, LYU Rui, GOLUBEV Yevgeny Aleksandrovich, WANG Ke, DONG Faqin, DUAN Tao, KOTOVA Olga Borisovna, KOTOVA Elena Leonidovna. Construction of Fe-aminoclay-glucose Oxidase Nanocomposite Catalyst and Its Multi-enzyme Cascade Analysis [J]. Chem. J. Chinese Universities, 2021, 42(3): 803. |
[3] | WANG Huan, SUO Jinquan, WANG Chunyan, WANG Runwei. Glucose Oxidase Immobilization with Amino Dendritic Mesoporous Silica Nanoparticles and Its Application in Glucose Detection [J]. Chem. J. Chinese Universities, 2020, 41(8): 1731. |
[4] | SONG Yichao, HU Mancheng, LI Shuni, ZHAI Quanguo, JIANG Yucheng. Construction of CPO Immobilized Enzyme Reactor Based on Center-radial Dendritic Mesoporous Silica and Its Application † [J]. Chem. J. Chinese Universities, 2019, 40(9): 1805. |
[5] | GAO Fengqin,WANG Shan,WANG Yunfang,ZHAO Danlei,CUI Ru,JIANG Yucheng. Immobilization of Chloroperoxidase with Magnetic Graphene Oxide and Its Application of Decolorization of Acid Blue 45† [J]. Chem. J. Chinese Universities, 2018, 39(5): 904. |
[6] | WANG Fengjiao, LI Xuelian, HU Mancheng, LI Shuni, ZHAI Quanguo, JIANG Yucheng. Cascade Biodegradation of Organic Pesticide Isoproturon [J]. Chem. J. Chinese Universities, 2017, 38(8): 1362. |
[7] | HUANG Haiping, YUE Yafeng, XU Liang, LÜ Lianlian, HU Yongmei. Glucose Biosensor Based on Dy2(MoO4)3-AuNPs Composite Nanomaterial† [J]. Chem. J. Chinese Universities, 2017, 38(4): 554. |
[8] | WANG Shengjie, LIU Lixia, JIANG Yucheng, HU Mancheng, LI Shuni, ZHAI Quanguo. Enzymatic Polymerization of Phenols Catalyzed by Chloroperoxidase in the Presence of Ionic Liquids/Quaternary Ammonium Salts† [J]. Chem. J. Chinese Universities, 2016, 37(9): 1733. |
[9] | WANG Ke, WU Xia-Qin, LI Lin, TIAN Hai-Tao, LU Zhong-Qing. Electrochemical Catalytic Chlorination of Bergenin by Chloroperoxidase Modified Electrode [J]. Chem. J. Chinese Universities, 2013, 34(7): 1739. |
[10] | LI Hai-Yun, JIANG Yu-Cheng, HU Man-Cheng, LI Shu-Ni, ZHAI Quan-Guo. Relationship Between Mn2+ in the Domain of Active Center of Chloroperoxidase and Enzyme Catalytic Performance [J]. Chem. J. Chinese Universities, 2013, 34(4): 875. |
[11] | WANG Ya-Li, NIE Yan-Yan, JIANG Yu-Cheng, HU Man-Cheng, LI Shu-Ni, ZHAI Quan-Guo. Synthesis, Structure and Performance of Soluble Polyaniline by CPO-catalyzed Oxidation Using Small Molecule as Dopant or Polyelectrolyte as Template [J]. Chem. J. Chinese Universities, 2012, 33(06): 1344. |
[12] | ZHANG Hong-Xia, WU Xia-Qin*, HOU Wen-Jing, LU Zhong-Qing, XIE Wen, WANG Rong, LI He-Xing. Catalytic Chlorination of MCD Using Chloroperoxidase Coated by Single-Wall Carbon Nanotubes Films on GC Electrodes [J]. Chem. J. Chinese Universities, 2008, 29(9): 1863. |
[13] | SUN Ying-Ying, ZHAO Shuang, YANG Wei-Wei, SUN Chang-Qing*. Ordered Multilayer Film Electrode Containing Glucose Oxidase Based on Layer-by-layer Self-reaction [J]. Chem. J. Chinese Universities, 2006, 27(5): 839. |
[14] | TANG Fang-Qiong, SHEN Ji-Feng, ZHANG Jin-Fang, ZHANG Gai-Lian . Enhancement of Glucose Biosensor Sensitivity by Addition of Silver Sols [J]. Chem. J. Chinese Universities, 1999, 20(4): 634. |
[15] | HU Ping, LUO Guo-An, WANG Ru-Ji, DONG Run-An, SONG Xin-Qi. Studies on the interaction of Photosensitizers and Glucose Oxidase Using Capillary Electrophoresis [J]. Chem. J. Chinese Universities, 1997, 18(9): 1459. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||