Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (3): 20210754.doi: 10.7503/cjcu20210754
• Physical Chemistry • Previous Articles Next Articles
ZHAO Wanjun1,2, LI Xiao1,2, Dang Hui1,2, WANG Yongzhao1(), ZHAO Yongxiang1(
)
Received:
2021-11-01
Online:
2022-03-10
Published:
2021-12-28
Contact:
WANG Yongzhao,ZHAO Yongxiang
E-mail:catalyst@sxu.edu.cn;yxzhao@sxu.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHAO Wanjun, LI Xiao, Dang Hui, WANG Yongzhao, ZHAO Yongxiang. Preparation of Supported Pd-Cu Catalyst and Its Preferential Oxidation of CO Under Hydrogen-rich Atmosphere[J]. Chem. J. Chinese Universities, 2022, 43(3): 20210754.
Fig.1 Catalytic performance of catalysts for preferential CO oxidation in rich H2 streamReaction conditions: 1% CO, 1% O2, 3.3% H2O, 50% H2, balance N2 atmosphere, GHSV=6000 h-1, 30 ℃.
Sample | Specific surface area/(m2?g-1) | Total pore volume/(cm3?g-1) | Average pore diameter/nm | Basic site/ (μmol?g-1) |
---|---|---|---|---|
Al2O3 | 262. 0 | 0.33 | 4.98 | 390.9 |
SiO2 | 490.5 | 0.24 | 1.94 | 88.7 |
C3N4 | 32 | 0.024 | 30.31 | 431.6 |
PC?Al2O3 | 183.0 | 0.23 | 4.96 | 344.0 |
PC?SiO2 | 317.1 | 0.15 | 1.94 | 247.8 |
PC?C3N4 | 51 | 0.026 | 20.55 | 63.8 |
Table 1 Textural properties and basic sites of different supports and catalysts
Sample | Specific surface area/(m2?g-1) | Total pore volume/(cm3?g-1) | Average pore diameter/nm | Basic site/ (μmol?g-1) |
---|---|---|---|---|
Al2O3 | 262. 0 | 0.33 | 4.98 | 390.9 |
SiO2 | 490.5 | 0.24 | 1.94 | 88.7 |
C3N4 | 32 | 0.024 | 30.31 | 431.6 |
PC?Al2O3 | 183.0 | 0.23 | 4.96 | 344.0 |
PC?SiO2 | 317.1 | 0.15 | 1.94 | 247.8 |
PC?C3N4 | 51 | 0.026 | 20.55 | 63.8 |
Sample | H2 consumption/(μmol?g-1) | ||
---|---|---|---|
Peak α | Peak β | Total | |
PC?Al2O3 | 1287 | 563 | 1850 |
PC?SiO2 | 880 | 412 | 1292 |
PC?C3N4 | 61 | — | 61 |
Table 2 H2 consumption of catalysts
Sample | H2 consumption/(μmol?g-1) | ||
---|---|---|---|
Peak α | Peak β | Total | |
PC?Al2O3 | 1287 | 563 | 1850 |
PC?SiO2 | 880 | 412 | 1292 |
PC?C3N4 | 61 | — | 61 |
Sample | Surface species atomic ratio | |
---|---|---|
Pd2+/(Cu++Cu2+) | Cu+/(Cu++Cu2+) | |
PC?Al2O3 | 0.056 | 0.212 |
PC?SiO2 | 0.039 | 0.115 |
PC?C3N4 | 0.036 | 0.667 |
Table 3 Parameters of catalysts obtained from XPS analysis
Sample | Surface species atomic ratio | |
---|---|---|
Pd2+/(Cu++Cu2+) | Cu+/(Cu++Cu2+) | |
PC?Al2O3 | 0.056 | 0.212 |
PC?SiO2 | 0.039 | 0.115 |
PC?C3N4 | 0.036 | 0.667 |
Fig.8 In situ DRIFTs spectra of PC?Al2O3(A), PC?SiO2(B), PC?C3N4(C), three catalysts after 5 min(a, b, c), 60 min(a′, b′) and 35 min(c′)(D) under 1%CO?1%O2?48%H2?N2 at 30 ℃(D) a, a′. PC?Al2O3; b, b′. PC?SiO2; c, c′. PC?C3N4.
1 | Saavedra J., Whittaker T., Chen Z., Pursell C. J., Rioux R. M., Chandler B. D., Nat. Chem., 2016, 8(6), 585―590 |
2 | Du X. D., Lang Y., Cao K., Yang J. Q., Cai J. M., Shan B., Chen R., J. Catal., 2021, 396, 148―156 |
3 | Chen Y., Lin J., Li L., Pan X., Wang X. D., Zhang T., Appl. Catal. B: Environ., 2021, 282, 119588 |
4 | Snytnikov P. V., Sobyanin V. A., Belyaev V. D., Tsyrulnikov P. G., Shitova N. B., Shlyapin D. A., Appl. Catal. A: Gen., 2003, 239(1/2), 149―156 |
5 | Kim Y. H., Park E. D., Lee H. C., Lee D., Lee K. H., Catal. Today, 2009, 146(1/2), 253―259 |
6 | Martinez L. M. T., Laguna O. H., Lopez⁃Cartes C., Centeno M. A., Mol. Catal., 2017, 440, 9―18 |
7 | Bathomarco C. G., Franke K. N., Ferreira A. P., Catal. Today, 2020, 344, 176―189 |
8 | Liao X. M., Liu Y. M., Chu W., Sall S., Petit C., Pitchon V., Caps V., J. Catal., 2020, 382, 329―338 |
9 | Qiu Z. H., Guo X. L., Mao J. X., Zhou R. X., Appl. Surf. Sci., 2019, 481, 1072―1079 |
10 | Wang H., Zhu H. Q., Qin Z. F., Liang F. X., Wang G. F., Wang J. G., J. Catal., 2009, 264(2), 154―162 |
11 | Zeng S. H., Liu K. W., Chen T. J., Su H. Q., Int. J. Hydrogen Energy, 2013, 38(34), 14542―14549 |
12 | Liu X. L., Li X. C., Qian H., Chi J., Chen B., Wang S. H., Chen C., Zhang N., Int. J. Hydrogen Energy, 2018, 43(52), 23299―23309 |
13 | Wang C., Guo L. H., Li X. G., Ma K., Dong T., Wang X. L., Cheng Q. P., Tian Y., Chem. J. Chinese Universities, 2017, 38(12), 2296―2305(王成, 郭丽红, 李新刚, 马奎, 丁彤, 王新雷, 程庆鹏, 田野. 高等学校化学学报, 2017, 38(12), 2296―2305) |
14 | Zlotea C., Oumellal Y., Provost K., Morfin F., Piccolo L., Appl. Catal. B: Environ., 2018, 237, 1059―1065 |
15 | Boukha Z., Ayastuy J. L., Gonzalez⁃Velasco J. R., Gutierrez⁃Ortiz M. A., Appl. Catal. B: Environ., 2017, 201, 189―201 |
16 | Pozdnyakova O., Teschner D., Wootsch A., Krohnert J., Steinhauer B., Sauer H., Toth L., Jentoft F. C., Knop⁃Gericke A., Paal Z., Schlogl R., J. Catal., 2006, 237(1), 17―28 |
17 | Cao K., Liu X., Zhu Q. Q., Shan B., Chen R., ChemCatChem, 2016, 8(2), 326―330 |
18 | Zhang H., Jin M. S., Liu H. Y., Wang J. G., Kim M. J., Yang D., Xie Z. X., Liu J. Y., Xia Y. N., ACS Nano, 2011, 5(10), 8212―8222 |
19 | Miguel⁃Garcia I., Berenguer⁃Murcia A., Cazorla⁃Amoros D., Appl. Catal. B: Environ., 2010, 98(3/4), 161―170 |
20 | Morfin F., Nassreddine S., Rousset J. L., Piccolo L., ACS Catal., 2012, 2(10), 2161―2168 |
21 | Li X., Wang Y. Z., Wei X. H., Zhao Y. Z., Mol. Catal., 2020, 491, 111002 |
22 | Li X., Wang Y. Z., Lv T. T., Xu Y. L., Zhao Y. X., Catal. Surv. Asia, 2019, 23(2), 102―109 |
23 | Zhou F. Y., Du X. X., Yu J., Mao D. S., Lu G. Z., RSC Adv., 2016, 6(71), 66553―66563 |
24 | Du X. X., Li H. Y., Yu J., Xiao X. Z., Shi Z. P., Mao D. S., Lu G. Z., Catal. Sci. Technol., 2015, 5(8), 3970―3979 |
25 | Busca G., PhysChemChemPhys, 1999, 1(5), 723―736 |
26 | Xie T. Z., Wang J. Y., Ding F. S., Zhang A. F., Li W. H., Guo X. W., Song C. S., J. CO2 Util., 2017, 19, 202―208 |
27 | Feng Y. F., Wang L., Zhang Y. H., Guo Y., Guo Y. L., Lu G. Z., Chinese J. Catal., 2013, 34(5), 923―931 |
28 | Rombi E., Cutrufello M. G., Monaci R., Cannas C., Gazzoli D., Onida B., Pavani M., Ferino I., J. Mol. Catal. A: Chem., 2015, 404, 83―91 |
29 | Zhu J. J., Xiao P., Li H. L., Carabineiro S. A. C., ACS Appl. Mater. Inter., 2014, 6(19), 16449―16465 |
30 | Shen P., Chen C., Wang R., Jiang W., Zhang N., Chem. J. Chinese Universities, 2013, 34(11), 2580―2586(沈盼, 陈超, 王瑞, 江婉, 张宁. 高等学校化学学报, 2013, 34(11), 2580―2586) |
31 | Li X., Xing L. S., Zhao W. J., Wang Y. Z., Zhao Y. X., Chem. J. Chinese Universities, 2020, 41(7),1600―1608(李潇, 郉莉莎, 赵婉君, 王永钊, 赵永祥. 高等学校化学学报, 2020, 41(7), 1600―1608) |
32 | Muniandy L., Adam F., Mohamed A. R., Iqbal A., Rahman N. R. A., Appl. Surf. Sci., 2017, 398, 43―55 |
33 | Kim Y. E., Jung U., Song D., Im H. B., Park J. C., Youn M. H., Jeong H. D., Rhim G. B., Chun D. H., Lee D. W., Lee K. B., Koo K. Y., Fuel, 2020, 281, 118791 |
34 | Zhao D. S., Wang J. L., Zhang J., Catal. Lett., 2008, 126(1/2), 188―192 |
35 | Zhang L. N., Wang H., Shen W. Z., Qin Z. F., Wang J. G., Fan W. B., J. Catal., 2016, 344, 293―302 |
36 | Yue M. B., Jiao W. Q., Wang Y. M., He M. Y., Micropor. Mesopor. Mater., 2010, 132(1/2), 226―231 |
37 | Briot E., Piquemal J. Y., Vennat M., Bregeault J. M., Chottard G. A., Manoli J. M., J. Mater. Chem., 2000, 10(4), 953―958 |
38 | Li X. W., Wang B., Yin W. X., Di J., Xia J. X., Zhu W. S., Li H. M., Acta Phys⁃Chim. Sin., 2020,36(3), 123―132(李小为, 王彬, 尹文轩, 狄俊, 夏杰祥, 朱文帅, 李华明. 物理化学学报, 2020, 36(3), 123―132) |
39 | Liu J. H., Ding T., Tian Y., Li X. G., Chem. J. Chinese Universities, 2018, 39(7), 1467―1474(刘敬华, 丁彤, 田野, 李新刚. 高等学校化学学报, 2018, 39(7), 1467―1474) |
40 | Xie L. F., Ni J., Tang B., He G. Y., Chen H. Q., Appl. Surf. Sci., 2018, 434, 456―463 |
41 | Shen Y. X., Guo Y., Wang L., Wang Y. Q., Guo Y. L., Gong X. Q., Lu G. Z., Catal. Sci. Technol., 2011, 1(7), 1202―1207 |
42 | Zhang R., Sun Y. H., Peng S. Y., React. Kinet. Catal. Lett., 1999, 67(1), 95―102 |
43 | Lounas I., Zazoua H., Saadi A., Benyoucef Z. M., Res. Chem. Intermediat., 2018, 44(11), 6549―6567 |
44 | Wang Z. L., Liu Q. S., Yu J. F., Wu T. H., Wang G. J., Appl. Catal. A: Gen., 2003, 239(1/2), 87―94 |
45 | Papageridis K. N., Charisiou N. D., Douvartzides S. L., Sebastian V., Hinder S. J., Baker M. A., AlKhoori S., Polychronopoulou K., Goula M. A., Fuel Process. Technol., 2020, 209, 106547 |
46 | Kazuto T., B. Chem. Soc. Jpn., 1972, 45(8), 2391―2397 |
47 | Shen Y. X., Lu G. Z., Guo Y., Wang Y. Q., Guo Y. L., Gong X. Q., Catal. Today, 2011, 175(1), 558―567 |
48 | Tsyganenko A. A., Mardilovich P. P., J. Chem. Soc. Faraday Trans., 1996, 92, 4843―4852 |
49 | Hair L. M., Infared Spectroscopy in Surface Chemistry, Marcel Dekker, New York, 1967 |
50 | Zipelli C., Bart. J. C. J., Petrini G., Galvagno S., Cimino C. Z., Anorg. Allg. Chem., 1983, 502(7), 199―208 |
[1] | WANG Zumin, MENG Cheng, YU Ranbo. Doping Regulation in Transition Metal Phosphides for Hydrogen Evolution Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220544. |
[2] | ZHANG Xiang, XIE Xulan, XIONG Likun, PENG Yang. Urchin-like Gold Nanoneedle for Efficient Electrocatalytic CO2 Reduction [J]. Chem. J. Chinese Universities, 2021, 42(9): 2824. |
[3] | JI Xiaohao, WANG Zumin, CHEN Xiaoyu, YU Ranbo. Overview of Transition Metal Phosphide Catalysts and Hydrogen Production by Electrolyzed Water [J]. Chem. J. Chinese Universities, 2021, 42(5): 1377. |
[4] | SU Gaoming, SHEN Ruichen, TAN Jie, YUAN Quan. Progress on the Application of Long Persistent Phosphors in Photocatalytic System [J]. Chem. J. Chinese Universities, 2020, 41(11): 2404. |
[5] | WU Hao, WANG Changzhen, QIU Yuan, TIAN Yani, ZHAO Yongxiang. Effect of Steric Confinement Dimension on Metal Site Anti-carbon Deposition Ability of Ni-SiO2 Catalysts in CH4-CO2 Reforming [J]. Chem. J. Chinese Universities, 2020, 41(11): 2488. |
[6] | LI Xiao,XING Lisha,ZHAO Wanjun,WANG Yongzhao,ZHAO Yongxiang. Preparation and Characterization of Pd-Cu/hydroxyapatite Catalyst and Its Catalytic Performance for Room-temperature CO Oxidation in Humid Circumstances† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1600. |
[7] | HAO Yan, YANG Hua, WANG Xiang, LI Qingyang, ZHAO Pan, TANG Qinghu, SONG Shili, XI Guoxi. Palladium-based Nanocatalysts Supported on Polybenzoxazine for Aromatic Alcohol Oxidation † [J]. Chem. J. Chinese Universities, 2020, 41(4): 757. |
[8] | MENG Qingnan, WANG Kai, TANG Yufei, ZHAO Kang, XIANG Siyuan, ZHANG Kai, ZHAO Lang. Preparation of Gold Nanoparticles Loaded Hollow Silica Spheres and Their Catalytic Performance† [J]. Chem. J. Chinese Universities, 2017, 38(3): 503. |
[9] | WANG Huichun, WANG Fachun, LI Baolin. Preparation of Cyclodextrin-based Mesoporous Carbon and Its Catalytic Performance† [J]. Chem. J. Chinese Universities, 2016, 37(11): 2076. |
[10] | SONG Hua,YU Qi,XU Xiaowei,SONG Hualin,JIANG Nan,LI Feng,CHEN Yanguang. Effect of Yttrium and Citric Acid on the Hydrodesulfurization Performance of Unsupported Nickel Phosphide† [J]. Chem. J. Chinese Universities, 2016, 37(8): 1528. |
[11] | XIAO Ye, WANG Yang, ZHOU Wei, PENG Xiaohong. Preparation of Ru/Rh Bimetallic Nanoparticles Stabilized by Heterocyclic Poly(propylene imine) Dendrimer and Their Application for Catalytic Hydrogenation of Nitrile-Butadiene Rubber† [J]. Chem. J. Chinese Universities, 2016, 37(4): 786. |
[12] | MENG Zhiyu, ZHANG Yin, ZHAO Lili, ZHANG Hongxi, ZHAO Yongxiang. Liquid Phase Hydrogenation of Maleic Anhydride over Ni/TiO2 Catalysts with Different TiO2 Polymorphs† [J]. Chem. J. Chinese Universities, 2015, 36(9): 1779. |
[13] | KONG Lingzhi, WANG Qian, XU Li, YAN Yongsheng, LI Huaming, YANG Xiangguang. Influence of CuO on Ce-Zr-O2 Dispersion on Catalytic Properties in CO Oxidation† [J]. Chem. J. Chinese Universities, 2015, 36(7): 1372. |
[14] | LI Lingcong, HU Ruisheng, BAI Yaqin, LI Jingjia, TANG Hailian, WANG Junhu, JI Shengfu. Inverse CeO2/La2Sn1.7Co0.3O7-δ Catalyst for Methane Catalytic Combustion† [J]. Chem. J. Chinese Universities, 2015, 36(7): 1328. |
[15] | GUO Xiao, LIN Shaoying, QIN Kai, ZHANG Yahong, TANG Yi. Controllable Detemplation of Nanozeolites and Research of Molecular Diffusing Limitation† [J]. Chem. J. Chinese Universities, 2015, 36(4): 713. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||