Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (4): 1307.doi: 10.7503/cjcu20210098
• Article • Previous Articles
ZHANG Nan1(), HAN Kuo1, LI Yue1, WANG Chunru1, ZHAO Feng1, HAN Dongxue2(
), NIU Li2
Received:
2021-02-18
Online:
2021-04-10
Published:
2021-04-08
Contact:
ZHANG Nan
E-mail:zhangnan@cup.edu.cn;dxhan@gzhu.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHANG Nan, HAN Kuo, LI Yue, WANG Chunru, ZHAO Feng, HAN Dongxue, NIU Li. Core-shell Heterostructure Construction Between Thiospinel CuCo2S4 and MoS2 for Improved Hydrogen Evolution Electrocatalytic Performance[J]. Chem. J. Chinese Universities, 2021, 42(4): 1307.
Catalytic electrode | η10/mV | η300/mV | Tafel slope/(mV·dec-1) |
---|---|---|---|
MoS2@CuCo2S4?Ni3S2/NF | 116 | 282 | 89.43 |
MoS2@Ni3S2/NF | 172 | 352.5 | 112.56 |
CuCo2S4?Ni3S2/NF | 156 | 364 | 138.75 |
NF | 276 | 446 | 152.28 |
Catalytic electrode | η10/mV | η300/mV | Tafel slope/(mV·dec-1) |
---|---|---|---|
MoS2@CuCo2S4?Ni3S2/NF | 116 | 282 | 89.43 |
MoS2@Ni3S2/NF | 172 | 352.5 | 112.56 |
CuCo2S4?Ni3S2/NF | 156 | 364 | 138.75 |
NF | 276 | 446 | 152.28 |
Catalytic electrode | Cdl/(mF·cm-2) | Rct/Ω |
---|---|---|
MoS2@CuCo2S4?Ni3S2/NF | 110.51 | 0.95 |
MoS2@Ni3S2/NF | 27.58 | 1.28 |
CuCo2S4?Ni3S2/NF | 41.66 | 4.76 |
Catalytic electrode | Cdl/(mF·cm-2) | Rct/Ω |
---|---|---|
MoS2@CuCo2S4?Ni3S2/NF | 110.51 | 0.95 |
MoS2@Ni3S2/NF | 27.58 | 1.28 |
CuCo2S4?Ni3S2/NF | 41.66 | 4.76 |
1 | Jiang Y. Y., Li B. Y., Lu Y. Z., Wu T. S., Han D. X., Chem. J. Chinese Universities, 2020, 41(12), 2774—2780(姜媛媛, 李伯语, 逯一中, 吴同舜, 韩冬雪. 高等学校化学学报, 2020, 41(12), 2774—2780) |
2 | Wang W. F., Qin S., Zhang R. R., Zhou P. P., Yang Q. H., Chen T. Y., Chem. J. Chinese Universities, 2019, 40(9), 1979—1987 (王文峰, 秦山, 张荣荣, 周盼盼, 杨庆华, 陈天云. 高等学校化学学报, 2019, 40(9), 1979—1987) |
3 | Lukowski M. A., Daniel A. S., Meng F., Forticaux A., Li L., Jin S., J. Am. Chem. Soc., 2013, 135(28), 10274—10277 |
4 | Li Y., Yin Z., Cui M., Liu X., Xiong J., Chen S., Ma T., J. Mater. Chem. A, 2021, 9(4), 2070—2092 |
5 | Zhang X., Zhou F., Zhang S., Liang Y., Wang R., Adv. Sci., 2019, 6(10), 1900090 |
6 | Zheng M., Guo K., Jiang W. J., Tang T., Wang X., Zhou P., Du J., Zhao Y., Xu C., Hu J. S., Appl. Catal. B: Environ., 2019, 244, 1004—1012 |
7 | Ahmed A. T. A., Ansari A. S., Pawar S. M., Shong B., Kim H., Im H., Appl. Surf. Sci., 2021, 539, 148229 |
8 | Li Q., Jiao Q., Li H., Zhou W., Feng X., Qiu B., Shi Q., Zheng Y., Zhao Y., Feng C., J. Alloy. Compd., 2020, 845, 156183 |
9 | Xie T., Xu J., Wang J., Xuan C., Ma C., Su L., Dong F., Gong L., Energ. Fuel., 2020, 34(12), 16791—16799 |
10 | Hao Z., Wei P., Yang Y., Sun J., Song Y., Guo D., Liu L., Appl. Surf. Sci., 2021, 536, 147826 |
11 | Zequine C., Bhoyate S., Wang F., Li X., Siam K., Kahol P. K., Gupta R. K., J. Alloy. Compd.,2019, 784, 1—7 |
12 | Du X., Ding Y., Su H., Zhang X., Int. J. Hydrogen Energ.,2020, 45(21), 12012—12025 |
13 | Chauhan M., Reddy K. P., Gopinath C. S., Deka S., ACS Catal.,2017, 7(9), 5871—5879 |
14 | Yang L., Xie L., Ren X., Wang Z., Liu Z., Du G., Asiri A. M., Yao Y., Sun X., Chem. Commun.,2018, 54(1), 78—81 |
15 | Ren X. R., Zhou Q., Chem. J. Chinese Universities,2020, 41(1), 162—174(任向荣, 周琦. 高等学校化学学报, 2020, 41(1), 162—174) |
16 | Zhang N., Lei J., Xie J., Huang H., Yu Y., RSC Adv.,2017, 7(73), 46286—46296 |
17 | Lu M., Zhang X., Tong J., Wang W., Wang Y., Chem. Eur. J., 2021, 27(1), 238—241 |
18 | Czioska S., Wang J., Teng X., Chen Z., ACS Sustain. Chem. Eng.,2018, 6(9), 11877—11883 |
19 | Sun Q. Q., Cao B. Y., Zhou C. S., Zhang G. C., Wang Z. L., Chem. J. Chinese Universities,2020, 41(6), 1287—1296(孙强强, 曹宝月, 周春生, 张国春, 王增林. 高等学校化学学报, 2020, 41(6), 1287—1296) |
20 | Dai H. Y., Yang H. M., Liu X., Jian X., Guo M. M., Cao L. L., Liang Z. H., Chem. J. Chinese Universities,2018, 39(2), 351—358(代红艳, 杨慧敏, 刘宪, 简选, 郭敏敏, 曹乐乐, 梁镇海. 高等学校化学学报, 2018, 39(2), 351—358) |
21 | Muthurasu A., Ojha G. P., Lee M., Kim H. Y., Electrochim. Acta,2020, 334, 135537 |
22 | Zhao S., Wang Y., Zhang Q., Li Y., Gu L., Dai Z., Liu S., Lan Y. Q., Han M., Bao J., Inorg. Chem. Front., 2016, 3(12), 1501—1509 |
23 | Luo Y., Tang L., Khan U., Yu Q., Cheng H. M., Zou X., Liu B., Nat. Commun.,2019, 10, 269 |
24 | Zhang N., Gao Y., Wang C., Zhao F., Duan Z., Liu J., Yu Y., Chem. Commun.,2020, 56(80), 12065—12068 |
25 | Du X., Fu J., Zhang X., Chem. Asian J.,2019, 14(19), 3386—3396 |
26 | Xu X., Huang Z., Zhao C., Ding X., Liu X., Wang D., Hui Z., Jia R., Liu Y., Ceram. Int., 2020, 46(9), 13125—13132 |
27 | Ma L., Liang J., Chen T., Liu Y., Li S., Fang G., Electrochim. Acta,2019, 326, 135002 |
28 | Qin C., Fan A., Zhang X., Wang S., Yuan X., Dai X., J. Mater. Chem. A,2019, 7(48), 27594—27602 |
29 | Cheng P., Yuan C., Zhou Q., Hu X., Li J., Lin X., Wang X., Jin M., Shui L., Gao X., Notzel R., Zhou G., Zhang Z., Liu J., J. Phys. Chem. C,2019, 123(10), 5833—5839 |
30 | Kuang P., Tong T., Fan K., Yu J., ACS Catal., 2017, 7(9), 6179—6187 |
31 | Wei C., Liu C., Gao L., Sun Y., Liu Q., Zhang X., Guo J., J. Alloy. Compd.,2019, 796, 86—92 |
32 | Huang H., Song J., Yu D., Hao Y., Wang Y., Peng S., Appl. Surf. Sci., 2020, 525, 146623 |
33 | Zhang N., Gao Y., Mei Y., Liu J., Song W., Yu Y., Inorg. Chem. Front.,2019, 6(1), 293—302 |
34 | Gao Y., Zhang N., Wang C., Zhao F., Yu Y., ACS Appl. Energ. Mater.,2020, 3(1), 666—674 |
35 | Lim K. J. H., Yilmaz G., Lim Y. F., Ho G. W., J. Mater. Chem. A,2018, 6(41), 20491—20499 |
36 | Zhou W., Wu X. J., Cao X., Huang X., Tan C., Tian J., Liu H., Wang J., Zhang H., Energ. Environ. Sci.,2013, 6(10), 2921—2924 |
37 | Cheng N., Liu Q., Asiri A. M., Xing W., Sun X., J. Mater. Chem. A,2015, 3(46), 23207—23212 |
38 | Li C., Zhao S., Zhu K., Wang B., Wang E., Luo Y., He L., Wang J., Jiang K., Fan S., Li J., Liu K., J. Mater. Chem. A,2020, 8(30), 14944—14954 |
39 | Wang C., Shao X., Pan J., Hu J., Xu X., Appl. Catal. B: Environ.,2020, 268, 118435 |
40 | Fan C., Yue X., Shen X., Cheng J., Ke W., Ji Z., Yuan A., Zhu G., ChemElectroChem,2021, 8(4), 665—674 |
[1] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[2] | YAO Qing, YU Zhiyong, HUANG Xiaoqing. Progress in Synthesis and Energy-related Electrocatalysis of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220323. |
[3] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[4] | WANG Sicong, PANG Beibei, LIU Xiaokang, DING Tao, YAO Tao. Application of XAFS Technique in Single-atom Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220487. |
[5] | HAN Fuchao, LI Fujin, CHEN Liang, HE Leiyi, JIANG Yunan, XU Shoudong, ZHANG Ding, QI Lu. Enhance of CoSe2/C Composites Modified Separator on Electrochemical Performance of Li-S Batteries at High Sulfur Loading [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220163. |
[6] | WANG Ruhan, JIA Shunhan, WU Limin, SUN Xiaofu, HAN Buxing. CO2-involved Electrochemical C—N Coupling into Value-added Chemicals [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220395. |
[7] | WANG Lijun, LI Xin, HONG Song, ZHAN Xinyu, WANG Di, HAO Leiduan, SUN Zhenyu. Efficient Electrocatalytic CO2 Reduction to CO by Tuning CdO-Carbon Black Interface [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220317. |
[8] | YANG Lijun, YU Yang, ZHANG Lei. Construction of Dual-functional 2D/3D Hydrid Co2P-CeO x Heterostructure Integrated Electrode for Electrocatalytic Urea Oxidation Assisted Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220082. |
[9] | XIA Tian, WAN Jiawei, YU Ranbo. Progress of the Structure-property Correlation of Heteroatomic Coordination Structured Carbon-based Single-atom Electrocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220162. |
[10] | ZHANG Hongwei, CHEN Wen, ZHAO Meiqi, MA Chao, HAN Yunhu. Research Progress of Single Atom Catalysts in Electrochemistry [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220129. |
[11] | WU Jun, HE Guanchao, FEI Huilong. Self-supported Film Electrodes Decorated with Single Atoms for Energy Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220051. |
[12] | CHEN Changli, MI Wanliang, LI Yujing. Research Progress of Single Atom Catalysts in Electrochemical Hydrogen Cycling [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220065. |
[13] | CHEN Zhaoyang, XUE Yurui, LI Yuliang. Synthesis and Applications of Graphdiyne Based Zerovalent Atomic Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220063. |
[14] | WANG Zumin, MENG Cheng, YU Ranbo. Doping Regulation in Transition Metal Phosphides for Hydrogen Evolution Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220544. |
[15] | DING Qin, ZHANG Zixuan, XU Peicheng, LI Xiaoyu, DUAN Limei, WANG Yin, LIU Jinghai. Effects of Cu, Ni and Co Hetroatoms on Constructions and Electrocatalytic Properties of Fe-based Carbon Nanotubes [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220421. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||