Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (11): 20250170.doi: 10.7503/cjcu20250170
• Physical Chemistry • Previous Articles Next Articles
WU Bing1,2, YIN Nan1,2, HU Jinling3, WEI Xiaolan3, ZHAO Hong1,4(
), SHI Quan2(
)
Received:2025-06-20
Online:2025-11-10
Published:2025-08-18
Contact:
ZHAO Hong, SHI Quan
E-mail:zhaohong@suse.edu.cn;shiquan@dicp.ac.cn
Supported by:CLC Number:
TrendMD:
WU Bing, YIN Nan, HU Jinling, WEI Xiaolan, ZHAO Hong, SHI Quan. Thermodynamic Property of Molten Salt Thermal Energy Storage Materials Using Drop Calorimetric Technique[J]. Chem. J. Chinese Universities, 2025, 46(11): 20250170.
| NaNO3 | KNO3 | 60%NaNO3-40%KNO3 | |||
|---|---|---|---|---|---|
| T/K | T/K | T/K | |||
| Solid | Solid | Solid | |||
| 373.15 | 77.975 | 373.15 | 63.779 | 373.15 | 82.039 |
| 423.15 | 143.70 | 423.15 | 156.67 | 393.15 | 106.21 |
| 473.15 | 218.62 | 473.15 | 222.49 | 413.15 | 130.89 |
| 523.15 | 305.86 | 523.15 | 291.08 | 433.15 | 155.77 |
| 563.15 | 407.53 | 573.15 | 349.87 | 453.15 | 187.32 |
| 568.15 | 414.20 | 603.15 | 410.54 | 473.15 | 221.58 |
| 573.15 | 410.86 | 483.15 | 239.91 | ||
| 578.15 | 430.49 | 493.15 | 252.72 | ||
| Liquid | Liquid | Liquid | |||
| 583.15 | 615.97 | 608.15 | 466.07 | 503.15 | 337.74 |
| 588.15 | 627.27 | 613.15 | 522.74 | 513.15 | 387.99 |
| 593.15 | 633.82 | 618.15 | 529.66 | 523.15 | 409.59 |
| 598.15 | 638.71 | 623.15 | 534.91 | 533.15 | 424.68 |
| 603.15 | 639.44 | 673.15 | 602.57 | 553.15 | 456.57 |
| 623.15 | 684.98 | 723.15 | 669.12 | 573.15 | 486.16 |
| 673.15 | 761.24 | 593.15 | 520.78 | ||
| 723.15 | 842.46 | 613.15 | 549.55 | ||
| 633.15 | 579.85 | ||||
| 653.15 | 609.26 | ||||
| 673.15 | 633.44 | ||||
Table 1 Measured enthalpy of KNO3, NaNO3 and 60%NaNO3-40%KNO3
| NaNO3 | KNO3 | 60%NaNO3-40%KNO3 | |||
|---|---|---|---|---|---|
| T/K | T/K | T/K | |||
| Solid | Solid | Solid | |||
| 373.15 | 77.975 | 373.15 | 63.779 | 373.15 | 82.039 |
| 423.15 | 143.70 | 423.15 | 156.67 | 393.15 | 106.21 |
| 473.15 | 218.62 | 473.15 | 222.49 | 413.15 | 130.89 |
| 523.15 | 305.86 | 523.15 | 291.08 | 433.15 | 155.77 |
| 563.15 | 407.53 | 573.15 | 349.87 | 453.15 | 187.32 |
| 568.15 | 414.20 | 603.15 | 410.54 | 473.15 | 221.58 |
| 573.15 | 410.86 | 483.15 | 239.91 | ||
| 578.15 | 430.49 | 493.15 | 252.72 | ||
| Liquid | Liquid | Liquid | |||
| 583.15 | 615.97 | 608.15 | 466.07 | 503.15 | 337.74 |
| 588.15 | 627.27 | 613.15 | 522.74 | 513.15 | 387.99 |
| 593.15 | 633.82 | 618.15 | 529.66 | 523.15 | 409.59 |
| 598.15 | 638.71 | 623.15 | 534.91 | 533.15 | 424.68 |
| 603.15 | 639.44 | 673.15 | 602.57 | 553.15 | 456.57 |
| 623.15 | 684.98 | 723.15 | 669.12 | 573.15 | 486.16 |
| 673.15 | 761.24 | 593.15 | 520.78 | ||
| 723.15 | 842.46 | 613.15 | 549.55 | ||
| 633.15 | 579.85 | ||||
| 653.15 | 609.26 | ||||
| 673.15 | 633.44 | ||||
| Sample | Phase | A | B | C | D |
| NaNO3 | Solid | 5.1446×10-6 | -4.1454×10-3 | 2.1327 | -407.49 |
| Liquid | -1.4824×10-5 | -2.9202×10-2 | -17.496 | 3829.30 | |
| KNO3 | Solid | 2.2397×10-5 | -3.3356×10-2 | 17.757 | -3081.60 |
| Liquid | -1.5164 | -1.5021 | -356.76 | ||
| 60%NaNO3⁃40%KNO3 | Solid | -1.0931×10-5 | 1.7355×10-2 | -7.4096 | -999.64 |
| Liquid | -8.4975×10-6 | 1.4252×10-2 | -6.3846 | -1065.50 | |
Table 2 Polynomial fitting parameters of KNO3, NaNO3 and 60%NaNO3-40%KNO3
| Sample | Phase | A | B | C | D |
| NaNO3 | Solid | 5.1446×10-6 | -4.1454×10-3 | 2.1327 | -407.49 |
| Liquid | -1.4824×10-5 | -2.9202×10-2 | -17.496 | 3829.30 | |
| KNO3 | Solid | 2.2397×10-5 | -3.3356×10-2 | 17.757 | -3081.60 |
| Liquid | -1.5164 | -1.5021 | -356.76 | ||
| 60%NaNO3⁃40%KNO3 | Solid | -1.0931×10-5 | 1.7355×10-2 | -7.4096 | -999.64 |
| Liquid | -8.4975×10-6 | 1.4252×10-2 | -6.3846 | -1065.50 | |
| Sample | Tm/K | Deviation (%) | ΔHtr/(J·g-1) | Deviation (%) | ||
|---|---|---|---|---|---|---|
| The study | Ref. | The study | Ref. | |||
| KNO3 | 607.53 (603—613) | 607.00[ | 0.09 | 96.25 | 95.20[ | 1.09 |
| 609.15[ | -0.27 | 101.24[ | -5.18 | |||
| 610.15[ | -0.43 | 96.60[ | -0.36 | |||
| 607.60[ | -0.01 | 96.50[ | -0.26 | |||
| 610.15[ | -0.43 | 96.00[ | 0.26 | |||
| 607.40[ | 0.02 | 99.80[ | -3.69 | |||
| 606.55[ | 0.16 | |||||
| NaNO3 | 579.51 (578—583) | 579.00[ | 0.09 | 174.72 | 167.00[ | 4.42 |
| 583.35[ | -0.66 | 182.39[ | -4.39 | |||
| 581.15[ | -0.28 | 178.00[ | -1.88 | |||
| 579.15[ | 0.06 | 173.00[ | 0.98 | |||
| 579.00[ | 0.09 | 166.40[ | 4.76 | |||
| 577.50[ | 0.35 | 174.00[ | 0.41 | |||
| 580.15[ | -0.11 | 172.00[ | 1.56 | |||
| 580.00[ | -0.08 | 176.30[ | -0.90 | |||
| 578.55[ | 0.17 | |||||
| 60%NaNO3⁃40%KNO3 | 501.98 (493—513) | 493.60[ | 1.67 | 106.56 | 107.87[ | -1.23 |
| 504.00[ | -0.40 | 102.00[ | 4.28 | |||
| 501.35[ | 0.13 | 113.03[ | -6.07 | |||
| 515.00[ | -2.59 | 107.00[ | -0.41 | |||
| 494.15[ | 1.56 | 96.00[ | 9.91 | |||
Table 3 Comparison of the phase transition temperatures and phase transition enthalpies of KNO3, NaNO3 and 60%NaNO3-40%KNO3 with literature values
| Sample | Tm/K | Deviation (%) | ΔHtr/(J·g-1) | Deviation (%) | ||
|---|---|---|---|---|---|---|
| The study | Ref. | The study | Ref. | |||
| KNO3 | 607.53 (603—613) | 607.00[ | 0.09 | 96.25 | 95.20[ | 1.09 |
| 609.15[ | -0.27 | 101.24[ | -5.18 | |||
| 610.15[ | -0.43 | 96.60[ | -0.36 | |||
| 607.60[ | -0.01 | 96.50[ | -0.26 | |||
| 610.15[ | -0.43 | 96.00[ | 0.26 | |||
| 607.40[ | 0.02 | 99.80[ | -3.69 | |||
| 606.55[ | 0.16 | |||||
| NaNO3 | 579.51 (578—583) | 579.00[ | 0.09 | 174.72 | 167.00[ | 4.42 |
| 583.35[ | -0.66 | 182.39[ | -4.39 | |||
| 581.15[ | -0.28 | 178.00[ | -1.88 | |||
| 579.15[ | 0.06 | 173.00[ | 0.98 | |||
| 579.00[ | 0.09 | 166.40[ | 4.76 | |||
| 577.50[ | 0.35 | 174.00[ | 0.41 | |||
| 580.15[ | -0.11 | 172.00[ | 1.56 | |||
| 580.00[ | -0.08 | 176.30[ | -0.90 | |||
| 578.55[ | 0.17 | |||||
| 60%NaNO3⁃40%KNO3 | 501.98 (493—513) | 493.60[ | 1.67 | 106.56 | 107.87[ | -1.23 |
| 504.00[ | -0.40 | 102.00[ | 4.28 | |||
| 501.35[ | 0.13 | 113.03[ | -6.07 | |||
| 515.00[ | -2.59 | 107.00[ | -0.41 | |||
| 494.15[ | 1.56 | 96.00[ | 9.91 | |||
| [1] | Rolka P., Przybylinski T., Kwidzinski R., Lackowski M., Renewable Energy, 2021, 172, 541—550 |
| [2] | Bauer T., Pfleger N., Breidenbach N., Eck M., Laing D., Kaesche S., Applied Energy, 2013, 111, 1114—1119 |
| [3] | Liu J., Xiao X., Energy, 2023, 282, 128732 |
| [4] | Mazo J., Delgado M., Marin J. M., Zalba B., Energy Build., 2012, 47, 458—466 |
| [5] | Zhou W., Yang Z., Feng Y., Lin L., Int. J. Heat Mass Transfer, 2022, 198, 123422 |
| [6] | Tamme R., Bauer T., Buschle J., Laing D., Müller‐Steinhagen H., Steinmann W. D., Int. J. Energy Res., 2008, 32, 264—271 |
| [7] | Pfleger N., Braun M., Eck M., Bauer T., Energy Procedia, 2015, 69, 988—996 |
| [8] | Chen S. H., Cheng X. M., Li Y. Y., Wang X. L., Zheng H. H., Zhong H., Int. J. Energy Res., 2020, 44, 10008—10022 |
| [9] | Carling R. W., Thermochim. Acta, 1983, 60, 265—275 |
| [10] | Chieruzzi M., Cerritelli G. F., Miliozzi A., Kenny J. M., Torre L., Sol. Energy Mater. Sol. Cells, 2017, 167, 60—69 |
| [11] | Goodwin H. M., Kalmus H. T., Phys. Rev., 1909, 28, 1—24 |
| [12] | Kawakami M., Suzuki K., Yokoyama S., Takenaka T., Heat Capacity Measurement of Molten NaNO3 NaNO2 KNO3 by Drop Calorimetry, In VII International Conference on Molten Slags Fluxes and Salts, South African Institute of Mining and Metallurgy Fifth Floor, Johannesburg, 2004, 201—207 |
| [13] | Reinsborough V. C., Wetmore F. E. W., Aust. J. Chem., 1966, 20, 1—8 |
| [14] | Sun Y., Tan Z. C., Yin A. X., Chen S. X., Zhou L. X., Bull. Sci. Technol., 1989, 5, 24—29 |
| 孙毅, 谭志诚, 尹安学, 陈淑霞, 周立幸. 科技通报, 1989, 5, 24—29 | |
| [15] | Ma J., Guo J., Ahmad S., Li Z., Hong J., Remote Sens., 2020, 12, 937 |
| [16] | El⁃Ashram T., Radiat. Eff. Defects Solids, 2006, 161, 193—197 |
| [17] | Sun L. W., Li X. L., Tang C. M., Acta Phys. Chim. Sin., 2016, 32, 2327—2336 |
| 孙良伟, 李新利, 唐聪明. 物理化学学报, 2016, 32, 2327—2336 | |
| [18] | Barin I., In Thermochemical Data of Pure Substances, 3 ed., VCH, Federal Republic of Germany, 2008, Vol. 1, 906—1128 |
| [19] | Rao K. M. P., Prabhu K. N., Mater. Eng. Perform., 2020, 29, 1860—1868 |
| [20] | Tripi V., Sau S., Tizzoni A. C., Mansi E., Spadoni A., Corsaro N., D’Ottavi C., Capocelli M., Licoccia S., Delise T., J. Energy Storage, 2021, 33, 102065 |
| [21] | Takahashi Y., Sakamoto R., Kamimoto M., Int. J. Thermophys., 1988, 9(6), 1081—1090 |
| [22] | Qiao G., Lasfargues M., Alexiadis A., Ding Y., Appl. Therm. Eng., 2017, 111, 1517—1522 |
| [23] | Zhang H., The Modification Research of Ternary Nitrates, Wuhan University of Technology, Wuhan, 2014 |
| 张晗. 三元硝酸盐的改性研究, 武汉: 武汉理工大学, 2014 | |
| [24] | McConohy G., Kruizenga A., Solar Energy, 2014, 103, 242—252 |
| [25] | Costa S. C., Mahkamov K., Kenisarin M., Ismail M., Lynn K., Halimic E., Mullen D., J. Energy Res. Technol., 2019, 142, 31203—31209 |
| [26] | Huang Y., Effect of in⁃situ Synthesized Nanoparticles on Thermal Properties of NaNO3⁃KNO3, Wuhan University of Technology, Wuhan, 2018 |
| 黄毅. 原位合成纳米颗粒对Solar salt热物理性能的影响, 武汉: 武汉理工大学, 2018 | |
| [27] | Kourkova L., Svoboda R., Sadovska G., Podzemna V., Kohutova A., Thermochim. Acta, 2009, 491, 80—83 |
| [28] | Agyenim F., Hewitt N., Eames P., Smyth M., Renewable Sustainable Energy Rev., 2010, 14, 615—628 |
| [29] | Orozco M. A., Acurio K., Vásquez⁃Aza F., Martínez⁃Gómez J., Chico⁃Proano A., Materials, 2021, 14, 7223 |
| [1] | LI Lei,HUANG Cuiying,JIANG Xiaonan,GAO Xichan,WANG Changsheng. Ionic Hydrogen Bonding Between Arginine Side Chain and Nucleic Acid Bases† [J]. Chem. J. Chinese Universities, 2016, 37(8): 1460. |
| [2] | LI Zhaowan, QIAO Zhanping, CHEN Xin, DANG Yuanlin, YANG Qichao. Equilibria for the CsBr-TmBr3-H2O and CsBr-TmBr3-HBr(~13%)-H2O Systems at 298.15 K and Thermodynamic and Fluorescent Properties of New Solid-phase Compound [J]. Chem. J. Chinese Universities, 2015, 36(9): 1759. |
| [3] | JIA Zhaopeng, HU Xingen, FANG Guoyong. Enthaplic Pairwise Self-associations of Nicotinamide and Isonicotinamide in Aqueous KCl Solutions by Microcalorimetry† [J]. Chem. J. Chinese Universities, 2014, 35(2): 384. |
| [4] | FAN Wen-Hai, ZHANG Li-Hong, ZHANG Zi-Long, GUO Jing-Fu, REN Ai-Min, GE Peng-Fei. Theoretical Study on Antitumor Activities of Naphthoquinone Derivatives [J]. Chem. J. Chinese Universities, 2013, 34(7): 1731. |
| [5] | GAO Zhen-Fei, DI Ming-Zhe, DI You-Ying. Synthesis, Structure and Thermochemistry of Pyridine-2,6-dicarboxylic Acid Lithium Hydrogen [J]. Chem. J. Chinese Universities, 2013, 34(5): 1208. |
| [6] | ZHONG Wen-Wen, DI Ming-Zhe, DI You-Ying. Synthesis, Structure Characterization and Thermochemistry of Pyridine-2,6-dicarboxylic Acid Potassium Hydrogen [J]. Chem. J. Chinese Universities, 2012, 33(09): 2074. |
| [7] | FAN Gao-Chao, HUANG Zai-Yin*, JIANG Jun-Ying, LI Yan-Fen, SUN Li. Preparation and Standard Molar Formation Enthalpy of Weed-like ZnO Nanostructures [J]. Chem. J. Chinese Universities, 2011, 32(5): 1016. |
| [8] | LIU Yu-Pu, DI You-Ying*, HE Dong-Hua, KONG Yu-Xia, YANG Wei-Wei, DAN Wen-Yan. Low-temperature Heat Capacities and Thermochemistry Properties of Ethylene Diamine Dihydrochloride [J]. Chem. J. Chinese Universities, 2010, 31(6): 1227. |
| [9] | TONG Jing, SUN Ying-Chun, FANG Da-Wei, YANG Jia-Zhen*. Studies on the Thermo-Chemical Properties of Ionic Liquid Based on Alanine[C4mim][Ala] [J]. Chem. J. Chinese Universities, 2009, 30(6): 1210. |
| [10] | HE Dong-Hua, DI You-Ying*, YANG Wei-Wei, KONG Yu-Xia, DAN Wen-Yan, TAN Zhi-Cheng. Synthesis, Structure Characterization and Thermochemistry of Anhydrous Lithium Benzoinate [J]. Chem. J. Chinese Universities, 2009, 30(11): 2258. |
| [11] | YANG Wei-Wei1, KONG Yu-Xia1, DI You-Ying1*, SHI Quan2, TAN Zhi-Cheng2. Low-temperature Heat Capacities and Thermochemistry of Sodium Nicotinate Na(C6H4NO2)(s) [J]. Chem. J. Chinese Universities, 2008, 29(4): 799. |
| [12] | ZHANG Zi-Fu1, WANG Heng1, FANG Da-Wei1,2, YANG Jia-Zhen1*. Studies on the Enthalpy of Solution of Ionic Liquid [C2mim][FeCl4] Based on Transition Metal [J]. Chem. J. Chinese Universities, 2008, 29(3): 569. |
| [13] | YANG Jia-Zhen1, LI Ji-Guang1, FANG Da-Wei2,3, ZHANG Qing-Guo2,3, FENG Rong-Kai1, TAO Chuang1. Studies on Thermochemical Properties of Ionic Liquid Based on Transition Metal Ions System BMIC/ZnCl2 [J]. Chem. J. Chinese Universities, 2007, 28(3): 492. |
| [14] | WANG Xu, XU Li, ZHANG Rui, LIN Rui-Sen. Dilution Enthalpies of Formamide in Aqueous Ethylene Glycol Solutions [J]. Chem. J. Chinese Universities, 2006, 27(9): 1752. |
| [15] | LIU Chun-Li1,2; MA Lin3; LIN Rui-Sen1*. Enthalpic Interaction of L-Alanine with Five Oxacid Salts [J]. Chem. J. Chinese Universities, 2006, 27(7): 1366. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||