Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (10): 20220456.doi: 10.7503/cjcu20220456
• Review • Previous Articles
ZHENG Meiqi, MAO Fangqi, KONG Xianggui(), DUAN Xue
Received:
2022-07-01
Online:
2022-10-10
Published:
2022-08-09
Contact:
KONG Xianggui
E-mail:kongxg@buct.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHENG Meiqi, MAO Fangqi, KONG Xianggui, DUAN Xue. Layered Double Hydroxides as Sorbent for Remediation of Radioactive Wastewater[J]. Chem. J. Chinese Universities, 2022, 43(10): 20220456.
Radionuclide | LDHs | Eluent | Number | Efficiency | Ref. |
---|---|---|---|---|---|
U(Ⅵ) | BAO?LDH | NaNO3+HNO3 | 1 | 4% | [ |
MS?LDH | EDTA | 7 | 96%—98% | [ | |
MgAl?NO3?LDH | NaHCO3 | 5 | 98.2% | [ | |
TPP?LDH?1 | NaHCO3 | 5 | 97.6% | [ | |
TPP?LDH?2 | NaHCO3 | 5 | 96.5% | [ | |
MgAlFe?LDH | Na2CO3 | 5 | 93.8% | [ | |
NiAlFe?LDH | Na2CO3 | 5 | 92.6% | [ | |
PDA@MgAl?LDHs | NaOH | 5 | 91.1% | [ | |
FeAl?LDH | Water | 3 | 12.5% | [ | |
PBC@MgAl?LDH | HCl | 5 | 77.9% | [ | |
MgAl?LDH | HNO3+Na2CO3+EDTA | 6 | 83.5% | [ | |
MgAl?LDH/GO | HNO3+Na2CO3+EDTA | 6 | 73.4% | [ | |
CS+ | NiSiO@NiAlFe LDH | Na2CO3 | 5 | >82.7% | [ |
Eu(Ⅲ) | PDA@MgAl?LDHs | NaOH | 5 | 80% | [ |
Sr2+ | C?dot@MgAl?NO3?LDH | NaNO3 | 1 | >87% | [ |
NaNO3+HNO3 | 1 | >87% | [ | ||
MgAl?LDH/GO | NaNO3+HNO3 | 4 | ca. 93.8% | [ | |
SeO | C?dot@MgAl?NO3?LDH | NaNO3 | 1 | 55.7% | [ |
NaNO3+HNO3 | 1 | 85.9% | [ | ||
MgAl?LDH/GO | NaNO3+HNO3 | 4 | ca. 94.4% | [ |
Table 1 Regeneration of different materials
Radionuclide | LDHs | Eluent | Number | Efficiency | Ref. |
---|---|---|---|---|---|
U(Ⅵ) | BAO?LDH | NaNO3+HNO3 | 1 | 4% | [ |
MS?LDH | EDTA | 7 | 96%—98% | [ | |
MgAl?NO3?LDH | NaHCO3 | 5 | 98.2% | [ | |
TPP?LDH?1 | NaHCO3 | 5 | 97.6% | [ | |
TPP?LDH?2 | NaHCO3 | 5 | 96.5% | [ | |
MgAlFe?LDH | Na2CO3 | 5 | 93.8% | [ | |
NiAlFe?LDH | Na2CO3 | 5 | 92.6% | [ | |
PDA@MgAl?LDHs | NaOH | 5 | 91.1% | [ | |
FeAl?LDH | Water | 3 | 12.5% | [ | |
PBC@MgAl?LDH | HCl | 5 | 77.9% | [ | |
MgAl?LDH | HNO3+Na2CO3+EDTA | 6 | 83.5% | [ | |
MgAl?LDH/GO | HNO3+Na2CO3+EDTA | 6 | 73.4% | [ | |
CS+ | NiSiO@NiAlFe LDH | Na2CO3 | 5 | >82.7% | [ |
Eu(Ⅲ) | PDA@MgAl?LDHs | NaOH | 5 | 80% | [ |
Sr2+ | C?dot@MgAl?NO3?LDH | NaNO3 | 1 | >87% | [ |
NaNO3+HNO3 | 1 | >87% | [ | ||
MgAl?LDH/GO | NaNO3+HNO3 | 4 | ca. 93.8% | [ | |
SeO | C?dot@MgAl?NO3?LDH | NaNO3 | 1 | 55.7% | [ |
NaNO3+HNO3 | 1 | 85.9% | [ | ||
MgAl?LDH/GO | NaNO3+HNO3 | 4 | ca. 94.4% | [ |
1 | Wang X. M., Shan T. F., Pang S. J., J. Appl. Phycol., 2021, 33, 2587—2596 |
2 | Hu Q. H., Weng J. Q., Wang J. S., J. Environ. Radioactiv., 2010, 101, 426—437 |
3 | Burns P. C., Ewing R. C., Navrotsky A., Science, 2012, 335, 1184—1188 |
4 | Stern P. C., Science, 1993, 260, 1897—1899 |
5 | Pang H. W., Wang X. X., Yao W., Yu S. J., Wang X. K., Sci. Sin. Chim., 2018, 48, 58—73 |
庞宏伟, 王祥学, 姚文, 于淑君, 王祥科. 中国科学: 化学, 2018, 48, 58—73 | |
6 | Zhou Y. P., Wang X. W., Jia M. C., Du Z. H., Liang C. Q., Mod. Chem. Ind., 2022, 42, 117—121 |
周义朋, 王晓伟, 贾铭椿, 杜志辉, 梁成强. 现代化工, 2022, 42, 117—121 | |
7 | Peterson R. A., Buck E. C., Chun J., Daniel R. C., Herting D. L., Ilton E. S., Lumetta G. J., Clark S. B., Environ. Sci. Technol., 2018, 52, 381—396 |
8 | Ewing R. C., Mrs Bull, 2008, 33, 338—340 |
9 | Chaudhari L. B., Murthy Z. V. P., J. Hazard. Mater., 2010, 180, 309—315 |
10 | Yin L., Song S., Wang X. X., Niu F. L., Ma R., Yu S. J., Wen T., Chen Y. T., Hayat T., Alsaedi A., Wang X. K., Environ. Pollut., 2018, 238, 725—738 |
11 | Yang D. X., Wang X. X., Wang N., Zhao G. X., Song G., Chen D. Y., Liang Y., Wen T., Wang H. Q., Hayat T., Alsaedi A., Wang X. K., Wang S. H., J. Clean. Prod., 2018, 172, 2033—2044 |
12 | Wang X. X., Pang H. W., Wu Y. H., Yu S. J., Song G., Ma X. Y., Xu P. Y., Sci. Sin. Chim., 2019, 49, 2—11 |
王祥学, 庞宏伟, 吴忆涵, 于淑君, 宋刚, 马宵颖, 许佩瑶. 中国科学: 化学, 2019, 49, 2—11 | |
13 | Jiménez⁃Reyes M., Almazán⁃Sánchez P. T., Solache⁃Ríos M., J. Environ. Radioactiv., 2021, 233, 106610 |
14 | Zhang X. Y., Liu Y., Environ. Sci. Nano, 2020, 7, 1008—1040 |
15 | Wang L., Li Z. J., Wu Q. Y., Huang Z. W., Yuan L. Y., Chai Z. F., Shi W. Q., Environ. Sci. Nano, 2020, 7, 724—752 |
16 | Zou Y. D., Wang X. X., Khan A., Wang P. Y., Liu Y. H., Alsaedi A., Hayat T., Wang X. K., Environ. Sci. Technol., 2016, 50, 7290—7304 |
17 | Zhang T. Y., Gregory K., Hammack R. W., Vidic R. D., Environ. Sci. Technol., 2014, 48, 4596—4603 |
18 | Zhang S. W., Li J. X., Wang X. K., Huang Y. S., Zeng M. Y., Xu J. Z., ACS Appl. Mater. Inter., 2014, 6, 22116—22125 |
19 | Yu S. J., Liu Y., Ai Y. J., Wang X. X., Zhang R., Chen Z. S., Chen Z., Zhao G. X., Wang X. K., Environ. Pollut., 2018, 242, 1—11 |
20 | Sun Y. B., Yang S. T., Sheng G. D., Guo Z. Q., Tan X. L., Xu J. Z., Wang X. K., Sep. Purif. Technol., 2011, 83, 196—203 |
21 | Yu S. J., Wang X. X., Pang H. W., Zhang R., Song W. C., Fu D., Hayat T., Wang X. K., Chem. Eng. J., 2018, 333, 343—360 |
22 | Yu S. J., Wang J., Song S., Sun K. Y., Li J., Wang X. X., Chen Z. S., Wang X. K., Sci. China Chem., 2017, 60, 415—422 |
23 | Jin K. Y., Bai P., Li X. L., Zhang J. N., Yan W. F., Chem. J. Chinese Universities, 2022, 43(1), 20210516 |
靳科研, 白璞, 李小龙, 张佳楠, 闫文付. 高等学校化学学报, 2022, 43(1), 20210516 | |
24 | Zhao K. Q., Wu R. Y., Luo Y. F., Shi C. H., Hu J., Chem. J. Chinese Universities, 2021, 42(3), 834—842 |
赵开庆, 吴若雨, 罗翌峰, 石春红, 胡军. 高等学校化学学报, 2021, 42(3), 834—842 | |
25 | Bolisetty S., Peydayesh M., Mezzenga R., Chem. Soc. Rev., 2019, 48, 463—487 |
26 | Zhao X. D., Zheng M. Q., Gao X. L., Zhang J., Wang E. B., Gao Z. Q., Coordin. Chem. Rev., 2021, 440, 213970 |
27 | Zheng M. Q., Zhao X. D., Wang K. K., She Y. B., Gao Z. Q., Ind. Eng. Chem. Res., 2019, 58, 23330—23337 |
28 | Zhao X. D., Zheng M. Q., Gao X. L., Gao Z. Q., Huang H. L., J. Mater. Sci., 2020, 55, 14751—14760 |
29 | Gao X. L., Zheng M. Q., Zhao X. D., Song S. F., Gao Z. Q., J. Chem. Eng. Data, 2021, 66, 669—676 |
30 | Rives V., del Arco M., MartÍn C., Appl. Clay Sci., 2014, 88/89, 239—269 |
31 | Mousty C., Prévot V., Anal. Bioanal. Chem., 2013, 405, 3513—3523 |
32 | Li C. M., Wei M., Evans D. G., Duan X., Small, 2014, 10, 4469—4486 |
33 | Shan Q. Y., Zhang Y. X., Zhou Z., Electron. Compo. Mater., 2017, 36, 33—38 |
单乾元, 张育新, 周正. 电子元件与材料, 2017, 36, 33—38 | |
34 | Kim H. J., Lee J. Y., Kim T. H., Gwak G. H., Park J. H., Oh J. M., Appl. Clay Sci., 2020, 186, 105454 |
35 | Zhou D. J., Li P. S., Lin X., Mckinley A., Kuang Y., Liu W., Liu W. F., Sun X. M., Duan X., Chem. Soc. Rev., 2021, 50, 8790—8817 |
36 | Liu H. M., Zhao X. J., Zhu Y. Q., Yan H., Phys. Chem. Chem. Phys., 2020, 22, 2521—2529 |
37 | Prasad C., Tang H., Liu W., J. Nanostructure Chem., 2018, 8, 393—412 |
38 | Taviot⁃Gueho C., Prevot V., Forano C., Renaudin G., Mousty C., Leroux F., Adv. Funct. Mater., 2018, 28, 1703868 |
39 | Wang J., Lei Z. Y., Qin H., Zhang L. H., Li F., Ind. Eng. Chem. Res., 2011, 50, 7120—7128 |
40 | Richetta M., Varone A., Mattoccia A., Medaglia P. G., Kaciulis S., Mezzi A., Soltani P., Pizzoferrato, R., Surf. Interface Anal., 2018, 50, 1094—1098 |
41 | Fan G. L., Li F., Evans D. G., Duan X., Chem. Soc. Rev., 2014, 43, 7040—7066 |
42 | Kong X. G., Ge R. X., Liu T., Xu S. M., Hao P. P., Zhao X. J., Li Z. H., Lei X. D., Duan H. H., Chem. Eng. J., 2021, 407, 127178 |
43 | Mao F. Q., Hao P. P., Zhu Y. Q., Kong X. G., Duan X., Chinese J. Chem. Eng., 2022, 41, 42—48 |
44 | Kong X. G., Hao P. P., Duan H. H., Exploration, 2021, 1, 20210052 |
45 | Zhu Y. Q., Zhao X. J., Zhong Y., Chen Z. R., Yan H., Duan X., Chem. J. Chinese Universities, 2020, 41(11), 2287—2305 |
朱玉荃, 赵晓婕, 钟嫄, 陈子茹, 鄢红, 段雪. 高等学校化学学报, 2020, 41(11), 2287—2305 | |
46 | Rocha M. A., Petersen P. A. D., Teixeira E., Petrilli H. M., Leroux F., Taviot C., Constantino V. R. L., RSC Adv., 2016, 6, 16419—16436 |
47 | Evans D. G., Duan X., Chem. Commun., 2006, (5), 485—496 |
48 | Miederer S. E., Wirtz M., Fladung B., Chin. J. Dig. Dis., 2003, 4, 140—146 |
49 | Hu T. T., Gu Z., Williams G. R., Strimaite M., Zha J. J., Zhou Z., Zhang X. C., Tan C. L., Liang R. Z., Chem. Soc. Rev., 2022, 51, 6126—6176 |
50 | Choy J. H., Kwak S. Y., Jeong Y. J., Park J. S., Angew. Chem. Int. Ed., 2000, 39, 4041—4045 |
51 | Choy J. H., Jung J. S., Oh J. M., Park M., Jeong J., Kang Y. K., Han O. J., Biomaterials, 2004, 25, 3059—3064 |
52 | Gu Z., Rolfe B. E., Xu Z. P., Campbell J. H., Lu G. Q., Thomas A. C., Adv. Healthcare Mater., 2012, 1, 669—673 |
53 | Lin J. K., Uan J. Y., Wu C. P., Huang H. H., J. Mater. Chem., 2011, 21, 5011—5020 |
54 | Mao F. Q., Hao P. P., Kong X. G., Lei X. D., Duan X., Sci. Sin. Chim., 2021, 51, 493—508 |
毛方琪, 郝培培, 孔祥贵, 雷晓东, 段雪. 中国科学: 化学, 2021, 51, 493—508 | |
55 | Shi W. Y., Lin Y. J., Zhang S. T., Tian R., Liang R. Z., Wei M., Evans D. G., Duan X., Phys. Chem. Chem. Phys., 2013, 15, 18217—18222 |
56 | Zhao X. F., Zhang F. Z., Xu S. L., Evans D. G., Duan X., Chem. Mater., 2010, 22, 3933—3942 |
57 | Wang G. R., Rao D. M., Li K. T., Lin Y. J., Ind. Eng. Chem. Res., 2014, 53, 4165—4172 |
58 | Yang Y., Li K. T., Liu W. D., Wu Q., Guo J. S., Qing K. L., Yan H., Zhang Y. H., Lin Y. J., Ind. Eng. Chem. Res., 2021, 60, 5076—5083 |
59 | Novikau R., Lujaniene G., J. Environ. Manage., 2022, 309, 114685 |
60 | Li H. Y., Huang Y., Liu J. N., Duan H. R., Chemosphere, 2021, 282, 131046 |
61 | Zhu J. H., Liu Q., Liu J. Y., Chen R. R., Zhang H. S., Li R. M., Wang J., Environ. Sci. Nano, 2018, 5, 467—475 |
62 | Li B., Ma L. J., Tian Y., Yang X. D., Li J., Bai C. Y., Yang X. Y., Zhang S., Li S. J., Jin Y. D., J. Hazard. Mater., 2014, 271, 41—49 |
63 | Wang H., Yao H. Q., Chen L. H., Yu Z. H., Yang L. X., Li C., Shi K. R., Li, C. Q., Ma S. L., Sci. Total Environ., 2020, 759, 143483 |
64 | Asiabi H., Yamini Y., Shamsayei M., Chem. Eng. J., 2018, 337, 609-615 |
65 | Zhang H., Dai Z. R., Sui Y., Wang N. Y., Fu H. Y., Ding D. X., Hu N., Li G. Y., Wang Y. D., Li L., Ind. Eng. Chem. Res., 2018, 57, 17318—17327 |
66 | Hu Y. Y., Pan C., Zheng X. H., Hu F. P., Xu L., Xu G. P., Jian Y., Peng X. M., J. Hazard. Mater., 2021, 401, 123374 |
67 | Song S., Yin L., Wang X. X., Liu L., Huang S. Y., Zhang R., Wen T., Yu S. J., Fu D., Hayat T., Wang X. K., Chem. Eng. J., 2018, 338, 579—590 |
68 | Zou Y. D., Wang X. X., Wu F., Yu S. J., Hu Y. Z. Song W. C., Liu Y. H., Wang H. Q., Hayat T., Wang X. K., ACS Sustain. Chem. Eng., 2017, 5, 1173—1185 |
69 | Zhu K. R., Lu S. H., Gao Y., Zhang R., Tan X. L., Chen C. L., Appl. Surf. Sci., 2017, 396, 1726—1735 |
70 | Bo A., Sarina S., Liu H. W., Zheng Z. F., Xiao Q., Gu Y. T., Ayoko G. A., Zhu H. Y., ACS Appl. Mater. Inter., 2016, 8, 16503—16510 |
71 | Dong L. J., Li S. B., Jin Y. F., Hu B. W., Sheng G. D., Appl. Surf. Sci., 2021, 567, 150794 |
72 | Li S. B., Dong L. J., Wei Z. F., Sheng G. D., Du K., Hu B. W., J. Environ. Sci., 2020, 96, 127—137 |
73 | Koilraj P., Kamura Y., Sasaki K., ACS Sustain. Chem. Eng., 2017, 5, 9053—9064 |
74 | Koilraj P., Kamura Y., Sasaki K., ACS Sustain. Chem. Eng., 2018, 6, 13854—13866 |
75 | Xie L. X., Zhong Y., Xiang R. J., Fu G. Y., Xu Y. Z., Cheng Y. X., Liu Z., Wen T., Zhao Y. Y., Liu X. Q., Chem. Eng. J., 2017, 328, 574—584 |
76 | Pang H. W., Wu Y. H., Huang S. Y., Ding C. C., Li S., Wang X. X., Yu S. J., Chen Z. S., Song G., Wang X. K., Inorg. Chem. Front., 2018, 5, 2657—2665 |
77 | Lyu P., Wang G. H., Wang B., Yin Q. L., Li Y. J., Deng N. S., Appl. Clay Sci., 2021, 209, 106146 |
78 | Wang S. F., Li X., Liu Y. G., Zhang C., Tan X. F., Zeng G. M., Song B., Jiang L. H., J. Hazard. Mater., 2018, 342, 177—191 |
79 | Guo B. L., Kamura Y., Koilraj P., Sasaki K., Environ. Res., 2020, 187, 109712 |
80 | Linghu W. S., Yang H., Sun Y. X., Sheng G. D., Huang Y. Y., ACS Sustain. Chem. Eng., 2017, 5, 5608—5616 |
81 | Li W. T., Chen R. R., Liu Q., Liu J. Y., Yu J., Zhang H. S., Li R. M., Zhang M. L., Wang J., ACS Sustain. Chem. Eng., 2018, 6, 13385—13394 |
82 | Ma J. P., Wang C., Zhao Q. Y., Ren J. L., Chen Z., Wang J. J., Inorg. Chem. Front., 2020, 7, 487—497 |
[1] | JIANG Hongbin, DAI Wenchen, ZHANG Rao, XU Xiaochen, CHEN Jie, YANG Guang, YANG Fenglin. Research on Co3O4/UiO-66@α-Al2O3 Ceramic Membrane Separation and Catalytic Spraying Industry VOCs Waste Gas [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220025. |
[2] | HAO Honglei, MENG Fanyu, LI Ruoyu, LI Yingqiu, JIA Mingjun, ZHANG Wenxiang, YUAN Xiaoling. Biomass Derived Nitrogen Doped Porous Carbon Materials as Adsorbents for Removal of Methylene Blue in Water [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220055. |
[3] | WANG Hongning, HUANG Li, QING Jiang, MA Tengzhou, JIANG Wei, HUANG Weiqiu, CHEN Ruoyu. Activation of Biochar from Cattail and the VOCs Adsorption Application [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210824. |
[4] | MENG Xianglong, YANG Ge, GUO Hailing, LIU Chenguang, CHAI Yongming, WANG Chunzheng, GUO Yongmei. Synthesis of Nano-zeolite and Its Adsorption Performance for Hydrogen Sulfide [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210687. |
[5] | CHEN Xiaolu, YUAN Zhenyan, ZHONG Yingchun, REN Hao. Preparation of Triphenylamine Based PAF-106s via Mechanical Ball Milling and C2 Hydrocarbons Adsorption Property [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210771. |
[6] | TAN Lejian, ZHONG Xuanshu, WANG Jin, LIU Zongjian, ZHANG Aiying, YE Lin, FENG Zengguo. Low Critical Dissolution Temperature Behavior of β⁃Cyclodextrin and Its Application in the Preparation of β⁃Cyclodextrin Sheet Crystal with Ordered Nano⁃channel [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220405. |
[7] | TIAN Xiaokang, ZHANG Qingsong, YANG Shulin, BAI Jie, CHEN Bingjie, PAN Jie, CHEN Li, WEI Yen. Porous Materials Inspired by Microbial Fermentation: Preparation Method and Application [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220216. |
[8] | ZHANG Chi, SUN Fuxing, ZHU Guangshan. Synthesis, N2 Adsorption and Mixed-matrix Membrane Performance of Bimetal Isostructural CAU-21 [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210578. |
[9] | MA Jianxin, LIU Xiaodong, XU Na, LIU Guocheng, WANG Xiuli. A Multi-functional Zn(II) Coordination Polymer with Luminescence Sensing, Amperometric Sensing, and Dye Adsorption Performance [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210585. |
[10] | LIU Changhui, LIANG Guojun, LI Yanlu, CHENG Xiufeng, ZHAO Xian. Density Functional Theory Study of NH3 Adsorption on Boron Nanotubes [J]. Chem. J. Chinese Universities, 2021, 42(7): 2263. |
[11] | WANG Hongning, HUANG Li, SONG Fujiao, ZHU Ting, HUANG Weiqiu, ZHONG Jing, CHEN Ruoyu. Synthesis and VOCs Adsorption Properties of Hollow Carbon Nanospheres [J]. Chem. J. Chinese Universities, 2021, 42(6): 1704. |
[12] | WANG Longjie, FAN Hongchuan, QIN Yu, CAO Qiue, ZHENG Liyan. Research Progress of Metal-organic Frameworks in the Field of Chemical Separation and Analysis [J]. Chem. J. Chinese Universities, 2021, 42(4): 1167. |
[13] | YAN Yanhong, WU Simin, YAN Yilun, TANG Xihao, CAI Songliang, ZHENG Shengrun, ZHANG Weiguang, GU Fenglong. Sulfonic Acid-functionalized Spherical Covalent Organic Framework with Ultrahigh Capacity for the Removal of Cationic Dyes [J]. Chem. J. Chinese Universities, 2021, 42(3): 956. |
[14] | HU Xueyi, HAN Lulu, FANG Yun, XIA Yongmei. Admicelles and Adsolubilization of Extended Surfactants on Alumina [J]. Chem. J. Chinese Universities, 2021, 42(3): 843. |
[15] | ZHAO Kaiqing, WU Ruoyu, LUO Yifeng, SHI Chunhong, HU Jun. Construction of Active Sites in Porous Organic Polymers for Various Heavy Metal Ions Capture [J]. Chem. J. Chinese Universities, 2021, 42(3): 834. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||