Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (10): 3116.doi: 10.7503/cjcu20210483
• Physical Chemistry • Previous Articles Next Articles
MIAO Mengyao1, GUO Yichang1, SHAO Xueguang1,2, CAI Wensheng1()
Received:
2021-07-08
Online:
2021-10-10
Published:
2021-10-10
Contact:
CAI Wensheng
E-mail:wscai@nankai.edu.cn
Supported by:
CLC Number:
TrendMD:
MIAO Mengyao, GUO Yichang, SHAO Xueguang, CAI Wensheng. Mechanism of Ion Transport Across Membranes Assisted by Molecular Shuttles[J]. Chem. J. Chinese Universities, 2021, 42(10): 3116.
No. | Molecular system | Environment | Solvent box/nm3 | Simulation time/μs |
---|---|---|---|---|
1 | Rotaxane 2 | 3Cl-+7326CHCl3 | 8.6×9.2×13.2 | 1.47 |
2 | Rotaxane 2 | 3Cl-+7527CH3CN | 8.4×8.4×10.1 | 0.62 |
3 | Rotaxane 2 | 3Cl-+26557H2O | 8.4×8.7×10.4 | 0.63 |
4 | Rotaxane 2 | 3Cl-+2838CHCl3+2826CH3CN | 7.9×7.9×11.5 | 1.39 |
5 | Rotaxane 1 | 2Cl-+2805CHCl3+2773CH3CN | 8.0×7.9×11.3 | 1.45 |
6 | Rotaxane 1 | 3Cl-+1K++1878CHCl3+15420H2O | 7.9×8.5×11.3 | 3.21 |
7 | Rotaxane 2 | 4Cl-+1K++2456CHCl3+27820H2O | 9.6×10.4×12.8 | 2.27 |
No. | Molecular system | Environment | Solvent box/nm3 | Simulation time/μs |
---|---|---|---|---|
1 | Rotaxane 2 | 3Cl-+7326CHCl3 | 8.6×9.2×13.2 | 1.47 |
2 | Rotaxane 2 | 3Cl-+7527CH3CN | 8.4×8.4×10.1 | 0.62 |
3 | Rotaxane 2 | 3Cl-+26557H2O | 8.4×8.7×10.4 | 0.63 |
4 | Rotaxane 2 | 3Cl-+2838CHCl3+2826CH3CN | 7.9×7.9×11.5 | 1.39 |
5 | Rotaxane 1 | 2Cl-+2805CHCl3+2773CH3CN | 8.0×7.9×11.3 | 1.45 |
6 | Rotaxane 1 | 3Cl-+1K++1878CHCl3+15420H2O | 7.9×8.5×11.3 | 3.21 |
7 | Rotaxane 2 | 4Cl-+1K++2456CHCl3+27820H2O | 9.6×10.4×12.8 | 2.27 |
1 | Bezanilla F., Nat. Rev. Mol. Cell Bio., 2008, 9(4), 323—332 |
2 | Griffith L. C., Curr. Biol., 2001, 11(6), R226—R228 |
3 | Polovinkin L., Hassaine G., Perot J., Neumann E., Jensen A. A., Lefebvre S. N., Corringer P., Neyton J., Chipot C., Dehez F., Schoehn G., Nury H., Nature, 2018, 563(7730), 275—279 |
4 | Sun T. D., Zhao X., Huang X. R., Chem. J. Chinese Universities, 2011, 32(2), 327—331(孙铁东, 赵熹, 黄旭日. 高等学校化学学报, 2011, 32(2), 327—331) |
5 | Dudev T., Lim C., Chem. Rev., 2013, 114(1), 538—556 |
6 | Bagal S. K., Brown A. D., Cox P. J., Omoto K., Owen R. M., Pryde D. C., Sidders B., Skerratt S. E., Stevens E. B., Storer R. I., Swain N. A., J. Med. Chem., 2013, 56(3), 593—624 |
7 | Cohen T. S., Prince A., Nat. Med., 2012, 18(4), 509—519 |
8 | Oosterwijk E., Gillies R. J., Philos. T. R. Soc. B, 2014, 369(1638), 20130107 |
9 | Li Y. H., Zheng S. P., Legrand Y. M., Gilles A., Van der Lee A., Barboiu M., Angew. Chem. Int. Ed., 2018, 57(33), 10520—10524 |
10 | Xue M., Yang Y., Chi X. D., Zhang Z. B., Huang F. H., Accounts Chem. Res., 2012, 45(8), 1294—1308 |
11 | Madhavan N., Robert E. C., Gin M. S., Angew. Chem. Int. Ed., 2005, 44(46), 7584—7587 |
12 | Jeon Y. J., Kim H., Jon S., Selvapalam N., Oh D. H., Seo I., Park C., Jung S. R., Koh D., Kim K., J. Am. Chem. Soc., 2004, 126(49), 15944—15945 |
13 | Guo J. D., Xing W., Lu T. H., Yang H., Chem. J. Chinese Universities, 2002, 23(5), 958—960(郭继东, 邢巍, 陆天虹, 杨辉. 高等学校化学学报, 2002, 23(5), 958—960) |
14 | Chen S. J., Wang Y. C., Nie T., Bao C. Y., Wang C. X., Xu T. Y., Lin Q. N., Qu D. H., Gong X. Q., Yang Y., Zhu L. Y., Tian H., J. Am. Chem. Soc., 2018, 140(51), 17992—17998 |
15 | Zhang Z. J., Zhang H. Y., Liu Y., Chem. J. Chinese Universities, 2011, 32(9), 1913—1927(张志君, 张衡益, 刘育. 高等学校化学学报, 2011, 32(9), 1913—1927) |
16 | Zhang Q., Rao S., Xie T., Li X., Xu T., Li D., Qu D., Long Y., Tian H., Chem, 2018, 4(11), 2670—2684 |
17 | Yang S., Zhao C. X., Crespi S., Li X., Zhang Q., Zhang Z. Y., Mei J., Tian H., Qu D. H., Chem, 2021, 7(6), 1544—1556 |
18 | Yan X. Z, Zheng B., Huang F. H., Polym. Chem., 2013, 4(8), 2395—2399 |
19 | Credi A., Angew. Chem. Int. Ed., 2019, 58(13), 4108—4110 |
20 | Ye R., Ren C., Shen J., Li N., Chen F., Roy A., Zeng H., J. Am. Chem. Soc., 2019, 141(25), 9788—9792 |
21 | Ren C., Chen F., Ye R., Ong Y. S., Lu H., Lee S. S., Ying J. Y., Zeng H., Angew. Chem. Int. Ed., 2019, 58(24), 8034—8038 |
22 | Zhang H., Guo Y. C., Chipot C., Cai W. S., Shao X. G., J. Phys. Chem. Lett., 2021, 12(13), 3281—3287 |
23 | Bao X., Isaacsohn I., Drew A. F., Smithrud D. B., J. Am. Chem. Soc., 2006, 128(37), 12229—12238 |
24 | Wang C. X., Wang S. K., Yang H. T., Xiang Y. X., Wang X. B., Bao C. Y., Zhu L. Y., Tian H., Qu D. H., Angew. Chem. Int. Ed., 2021, 60(27), 14836—14840 |
25 | Phillips J. C., Hardy D. J., Maia J., Stone J. E., Tajkhorshid E., J. Chem. Phys., 2020, 153(4), 044130 |
26 | Wang J., Wolf R. M., Caldwell J. W., Kollman P. A., Case D. A., J. Comput. Chem., 2004, 25(9), 1157—1174 |
27 | Dickson C. J., Madej B. D., Skjevik Å. A., Betz R. M., Teigen K., Gould I. R., Walker R. C., J. Chem. Theory Comput., 2014, 10(2), 865—879 |
28 | Cieplak P., Caldwell J., Kollman P., J. Comput. Chem., 2001, 22(10), 1048—1057 |
29 | Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L., J. Chem. Phys., 1983, 79(2), 926—935 |
30 | Feller S. E., Zhang Y., Pastor R. W., Brooks B. R., J. Chem. Phys., 1995, 103(11), 4613—4621 |
31 | Miyamoto S., Kollman P. A., J. Comput. Chem., 1992, 13(8), 952—962 |
32 | Andersen H. C., J. Comput. Phys., 1983, 52(1), 24—34 |
33 | Darrin T., York L., Pedersen L., J. Chem. Phys., 1993, 98(12), 10089—10092 |
34 | Tuckerman M., Berne B. J., Martyna G. J., J. Chem. Phys., 1992, 97(3), 1990—2001 |
35 | Humphrey W., Dalke A., Schulten K., J. Mol. Graph., 1996, 14(1), 33—38 |
36 | Darve E., Pohorille A., J. Chem. Phys., 2001, 115(20), 9169—9183 |
37 | Darve E., Wilson M. A., Pohorille A., Mol. Simulat., 2002, 28(1/2), 113—144 |
38 | Fu H. H., Shao X. G., Chipot C., Cai W. S., J. Chem. Theory Comput., 2016, 12(8), 3506—3513 |
39 | Fu H. H., Shao X. G., Cai W. S., Chipot C., Accounts Chem. Res., 2019, 52(11), 3254—3264 |
40 | Fu H. H., Chen H. C., Wang X. A. A., Chai H., Shao X. G., Cai W. S., Chipot C., J. Chem. Inf. Model., 2020, 60(11), 5366—5374 |
41 | Barducci A., Bussi G., Parrinello M., Phys. Rev. Lett., 2008, 100(2), 20603 |
42 | Dama J. F., Parrinello M., Voth G. A., Phys. Rev. Lett., 2014, 112(24), 240602 |
43 | Fu H. H., Zhang H., Chen H. C., Shao X. G., Chipot C., Cai W. S., J. Phys. Chem. Lett., 2018, 9(16), 4738—4745 |
44 | Fu H. H., Chen H. C., Zhang H., Shao X. G., Cai W. S., Acta Chim. Sinica, 2021, 79(4), 472—480(付浩浩, 陈淏川, 张宏, 邵学广, 蔡文生. 化学学报, 2021, 79(4), 472—480) |
45 | Fu H. H., Shao X. G., Chipot C., Cai W. S., Chem. Sci., 2017, 8(7), 5087—5094 |
46 | Du S. L., Fu H. H., Shao X. G., Chipot C., Cai W. S., J. Phys. Chem. C, 2018, 122(16), 9229—9234 |
47 | Zhang H. Y., Xu Q., Wang Y. K., Zhao T. Z., Hu D., Wei D. Q., J. Chem. Theory Comput., 2016, 12(10), 4959—4969 |
[1] | CUI Shaoli, ZHANG Weijia, SHAO Xueguang, CAI Wensheng. Revealing the Effect of Threonine on the Binding Ability of Antifreeze Proteins with Ice Crystals by Free-energy Calculations [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210838. |
[2] | WU Zhiqiang, LIU Wanyi, WANG Gang, CAI Wei, YUE Xiaofei, ZHAN Haijuan, BI Shuxian, MENG Zhe, MA Baojun. Preparation of Protonated g-C3N4/β-SiC Composites and Photocatalytic Degradation of Alizarin Red S [J]. Chem. J. Chinese Universities, 2019, 40(10): 2178. |
[3] | TIAN Yao,ZHANG Chunquan,WANG Wenzhe,ZHOU Yingfang,LU Yitong,ZHANG Peng,JIA Zhenfu,ZHOU Chengyu,CHEN Shilan. Preparation of Polyrotaxane Cross-linking Agent with “Pulley” Effect and Its Potential Application in Swelling Grain Used as Profile Control and Water Plugging Agent† [J]. Chem. J. Chinese Universities, 2018, 39(9): 2098. |
[4] | ZHANG Hong, CAI Wensheng, SHAO Xueguang. Effect of Different Force Fields on B-DNA to A-DNA Conversion† [J]. Chem. J. Chinese Universities, 2018, 39(6): 1205. |
[5] | YI Junming,SONG Sen,ZHANG Sheng,ZHANG Shaowei,TIAN Mengkui,NI Xinlong. Effects of Terminal Groups of Guest on the Pseudorotaxane Assembly of Cucurbit[7]uril† [J]. Chem. J. Chinese Universities, 2018, 39(5): 911. |
[6] | LI Yuying, LI Dan, CHENG Longjiu, JIN Baokang. Investigation on Redox Mechanism of p-Nitrophenol in Aprotic Media† [J]. Chem. J. Chinese Universities, 2017, 38(11): 2023. |
[7] | LI Lei,HUANG Cuiying,JIANG Xiaonan,GAO Xichan,WANG Changsheng. Ionic Hydrogen Bonding Between Arginine Side Chain and Nucleic Acid Bases† [J]. Chem. J. Chinese Universities, 2016, 37(8): 1460. |
[8] | ZHAO Xiaolong, SUN Hongjuan, PENG Tongjiang. Changes of Structure and Functional Group of Reduction of Graphene Oxide with p-Phenylene Diamine† [J]. Chem. J. Chinese Universities, 2016, 37(4): 728. |
[9] | SHEN Wen, SHAO Xueguang, CAI Wensheng. Inclusion Mechanism of Cyclodextrins with Glutathione† [J]. Chem. J. Chinese Universities, 2016, 37(10): 1809. |
[10] | WANG Shuangshuang, LIU Peng, CAI Wensheng, SHAO Xueguang. Effect of Hydrophobicity of Threads on the Solvent-controlled Shuttling in Rotaxanes† [J]. Chem. J. Chinese Universities, 2015, 36(11): 2211. |
[11] | CHEN Shiyan, CUI Xiaowei, WANG Chuanzeng, NI Xinlong, MA Peihua, ZHANG Jianxin. Assembly and Property of Rotaxane Based on Cucurbit[6, 7]urils Host and Two Kinds of N,N'-Phthalimide Appended 4,4'-Dipyridyl Terminated Viologen Guest† [J]. Chem. J. Chinese Universities, 2015, 36(10): 1919. |
[12] | HE Jia, FENG Xizeng, SHAO Xueguang, CAI Wensheng. Adsorption Behavior of Hydrophobin Proteins on Surface of Mica† [J]. Chem. J. Chinese Universities, 2015, 36(1): 110. |
[13] | YANG Bo, WU Mingqiang, XIAO Xin, XUE Saifeng, TAO Zhu, WEI Gang. Supramolecular Self-assemblies of Cucurbit[7]uril with N,N'-Bis(4-dimethylaminobenzyl)-decane-1,10-diamine† [J]. Chem. J. Chinese Universities, 2014, 35(11): 2442. |
[14] | SHI Hu, CHENG Shan-Shan, AI Hong-Qi. Effect of Protonation on Structural Characteristics and Aggregation Mechanisms of β-Amyloid(1—16) Peptide [J]. Chem. J. Chinese Universities, 2013, 34(5): 1214. |
[15] | LIN Yan, ZHANG Ting, YAN Li-Kai, SU Zhong-Min. Density Functional Theory Studies on the Second-order Nonlinear Optical Properties of [V12O32]4- and Its Alkali Metal Cation and Protonated Derivatives [J]. Chem. J. Chinese Universities, 2013, 34(3): 615. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||