Chemical Journal of Chinese Universities ›› 2020, Vol. 41 ›› Issue (11): 2435-2441.doi: 10.7503/cjcu20190652
Previous Articles Next Articles
ZHOU Jinlong, LIU Xiaolong, FU Yao()
Received:
2020-05-11
Online:
2020-11-10
Published:
2020-11-06
Contact:
FU Yao
E-mail:fuyao@ustc.edu.cn
Supported by:
CLC Number:
ZHOU Jinlong, LIU Xiaolong, FU Yao. Visible-light-induced Selective Oxidation of Alcohols[J]. Chemical Journal of Chinese Universities, 2020, 41(11): 2435-2441.
Compd. | 1H NMR(400 MHz, CDCl3), δ | 13C NMR(101 MHz, CDCl3), δ |
---|---|---|
2a | 10.02(s, 1H), 7.89(ddd, J=7.0, 2.9, 1.6 Hz, 2H), 7.66—7.59(m, 1H), 7.56—7.50(m, 2H) | 192.38, 136.33, 134.52, 129.63, 128.47 |
2b | 7.76(d, J=8.1 Hz, 2H), 7.32(d, J=7.8 Hz, 2H), 2.41(s, 3H) | 191.91, 145.61, 134.26, 129.85, 129.71, 21.83 |
2c | 9.89(s, 1H), 7.95—7.52(m, 2H), 7.14—6.69(m, 2H), 3.89(s, 3H) | 190.79, 164.63, 131.99, 130.01, 114.33, 55.59 |
2d | 10.02(s, 1H), 7.89(ddd, J=7.0, 2.9, 1.6 Hz, 2H), 7.66—7.59(m, 1H), 7.56—7.50(m, 2H) | 190.29, 154.32, 131.97, 125.29, 111.09, 40.12 |
2e | 10.02(s, 1H), 7.89(ddd, J=7.0, 2.9, 1.6 Hz, 2H), 7.66—7.59(m, 1H), 7.56—7.50(m, 2H) | 190.79, 140.95, 134.75, 130.89, 129.45 |
2f | 10.14(s, 2H), 8.04(m, 4H) | 191.58, 140.18, 130.27 |
2g | 9.81(s, 1H), 7.41(dd, J=1.9 Hz, 2H), 7.36(d, J=1.9 Hz, 1H), 6.94(d, J=8.2 Hz, 1H), 3.92(s, 3H), 3.90(s, 3H) | 190.86, 154.50, 149.64,130.16, 126.83, 110.44, 108.99, 56.18, 56.01 |
2h | 10.02(s, 1H), 7.89(ddd, J=7.0, 2.9, 1.6 Hz, 2H), 7.66—7.59(m, 1H), 7.56—7.50(m, 2H) | 189.76, 137.94, 135.08, 132.52, 130.61, 129.39, 127.28 |
2i | 10.78(s, 1H), 9.41(d, J=9.4 Hz, 1H), 8.43(d, J=7.9 Hz, 1H), 8.27(ddd, J=18.1, 9.6, 5.6 Hz, 5H), 8.14—7.99(m, 2H) | 193.06, 135.55, 131.38, 131.10, 130.97, 130.84, 130.72, 130.45, 127.44, 127.21, 127.06, 126.85, 126.58, 124.69, 124.56, 124.09, 123.04 |
2j | 10.10(s, 1H), 9.07(d, J=2.0 Hz, 1H), 8.82—8.84(q, 1H), 8.15—8.18(m, 1H),7.46—7.50(q, 1H) | 190.64, 154.63, 151.91,135.72, 131.44, 124.02 |
Compd. | 1H NMR(400 MHz, CDCl3), δ | 13C NMR(101 MHz, CDCl3), δ |
2k | 9.87(s, 2H), 7.35(s, 2H) | 179.19, 154.23, 119.26 |
2l | 9.91(d, J=1.3 Hz, 1H), 7.85—7.64(m, 2H), 7.19(dd, J=4.9, 3.8 Hz, 1H) | 183.04, 144.10, 136.39, 135.18, 128.40 |
2m | 7.80(ddd, J=7.3, 2.9, 1.6 Hz, 4H), 7.61—7.53(m, 2H), 7.50—7.40(m, 4H) | 196.73, 137.64, 132.43, 130.07, 128.30 |
2n | 7.91(d, J=8.5 Hz, 2H), 7.45(d, J=8.5 Hz, 2H),2.60(s, 3H) | 196.71, 139.52, 135.45, 129.72, 128.86, 26.54 |
2o | 7.54(dd, J=1.5, 2.0 Hz, 1H), 7.36—7.42(m, 2H),7.31(td, J=7.5, 1.5 Hz, 1H), 2.64(s, 3H) | 200.43, 139.16, 131.93, 131.20, 130.60, 129.31, 126.92, 30.57 |
2p | 7.91(t, J=1.8 Hz, 1H),7.81—7.84(m, 1H),7.52—7.55(m, 1H),7.41(t, J=7.7 Hz, 1H), 2.59(s, 3H) | 196.58, 138.61, 134.91, 132.91, 129.86, 128.34, 126.31, 26.53 |
2q | 7.96(dt, J=8.6, 1.7 Hz, 2H), 7.59—7.51(m, 1H), 7.49—7.39(m, 2H), 2.60(s, 3H) | 198.13, 137.17, 133.10, 128.58, 128.31, 26.60 |
2r | 8.74(d, J=8.6 Hz, 1H), 7.92(ddd, J=25.7, 23.8, 8.2 Hz, 3H), 7.69—7.41(m, 3H), 2.74(s, 3H) | 201.84, 135.51, 134.01, 133.04, 130.18, 128.67, 128.43, 128.07, 126.46, 126.04, 124.35, 30.00 |
2s | 8.69(ddd, J=4.8, 1.6, 0.9 Hz, 1H), 8.05(dt, J=7.9, 1.1 Hz, 1H), 7.83(td, J=7.7, 1.7 Hz, 1H), 7.47(ddd, J=7.6, 4.8, 1.3 Hz, 1H), 2.73(s, 3H) | 200.10, 153.62, 148.98, 136.82, 127.06, 121.63, 25.76 |
2t | 7.77(d, J=7.7 Hz, 1H), 7.58(dd, J=7.4, 1.1 Hz, 1H), 7.50—7.44(m, 1H), 7.38(dd, J=10.9, 3.9 Hz, 1H), 3.23—3.06(m, 2H), 2.78—2.60(m, 2H) | 207.05, 155.16, 137.13, 134.60, 127.30, 126.71, 123.76, 36.24, 25.82 |
2u | 7.70(dd, J=3.8, 1.1 Hz, 1H), 7.64(dd, J=5.0, 1.1 Hz, 1H), 7.13(dd, J=5.0, 3.8 Hz, 1H), 2.62—2.49(m, 3H) | 190.71, 144.61, 133.76, 132.45, 128.11, 26.93 |
Compd. | 1H NMR(400 MHz, CDCl3), δ | 13C NMR(101 MHz, CDCl3), δ |
---|---|---|
2a | 10.02(s, 1H), 7.89(ddd, J=7.0, 2.9, 1.6 Hz, 2H), 7.66—7.59(m, 1H), 7.56—7.50(m, 2H) | 192.38, 136.33, 134.52, 129.63, 128.47 |
2b | 7.76(d, J=8.1 Hz, 2H), 7.32(d, J=7.8 Hz, 2H), 2.41(s, 3H) | 191.91, 145.61, 134.26, 129.85, 129.71, 21.83 |
2c | 9.89(s, 1H), 7.95—7.52(m, 2H), 7.14—6.69(m, 2H), 3.89(s, 3H) | 190.79, 164.63, 131.99, 130.01, 114.33, 55.59 |
2d | 10.02(s, 1H), 7.89(ddd, J=7.0, 2.9, 1.6 Hz, 2H), 7.66—7.59(m, 1H), 7.56—7.50(m, 2H) | 190.29, 154.32, 131.97, 125.29, 111.09, 40.12 |
2e | 10.02(s, 1H), 7.89(ddd, J=7.0, 2.9, 1.6 Hz, 2H), 7.66—7.59(m, 1H), 7.56—7.50(m, 2H) | 190.79, 140.95, 134.75, 130.89, 129.45 |
2f | 10.14(s, 2H), 8.04(m, 4H) | 191.58, 140.18, 130.27 |
2g | 9.81(s, 1H), 7.41(dd, J=1.9 Hz, 2H), 7.36(d, J=1.9 Hz, 1H), 6.94(d, J=8.2 Hz, 1H), 3.92(s, 3H), 3.90(s, 3H) | 190.86, 154.50, 149.64,130.16, 126.83, 110.44, 108.99, 56.18, 56.01 |
2h | 10.02(s, 1H), 7.89(ddd, J=7.0, 2.9, 1.6 Hz, 2H), 7.66—7.59(m, 1H), 7.56—7.50(m, 2H) | 189.76, 137.94, 135.08, 132.52, 130.61, 129.39, 127.28 |
2i | 10.78(s, 1H), 9.41(d, J=9.4 Hz, 1H), 8.43(d, J=7.9 Hz, 1H), 8.27(ddd, J=18.1, 9.6, 5.6 Hz, 5H), 8.14—7.99(m, 2H) | 193.06, 135.55, 131.38, 131.10, 130.97, 130.84, 130.72, 130.45, 127.44, 127.21, 127.06, 126.85, 126.58, 124.69, 124.56, 124.09, 123.04 |
2j | 10.10(s, 1H), 9.07(d, J=2.0 Hz, 1H), 8.82—8.84(q, 1H), 8.15—8.18(m, 1H),7.46—7.50(q, 1H) | 190.64, 154.63, 151.91,135.72, 131.44, 124.02 |
Compd. | 1H NMR(400 MHz, CDCl3), δ | 13C NMR(101 MHz, CDCl3), δ |
2k | 9.87(s, 2H), 7.35(s, 2H) | 179.19, 154.23, 119.26 |
2l | 9.91(d, J=1.3 Hz, 1H), 7.85—7.64(m, 2H), 7.19(dd, J=4.9, 3.8 Hz, 1H) | 183.04, 144.10, 136.39, 135.18, 128.40 |
2m | 7.80(ddd, J=7.3, 2.9, 1.6 Hz, 4H), 7.61—7.53(m, 2H), 7.50—7.40(m, 4H) | 196.73, 137.64, 132.43, 130.07, 128.30 |
2n | 7.91(d, J=8.5 Hz, 2H), 7.45(d, J=8.5 Hz, 2H),2.60(s, 3H) | 196.71, 139.52, 135.45, 129.72, 128.86, 26.54 |
2o | 7.54(dd, J=1.5, 2.0 Hz, 1H), 7.36—7.42(m, 2H),7.31(td, J=7.5, 1.5 Hz, 1H), 2.64(s, 3H) | 200.43, 139.16, 131.93, 131.20, 130.60, 129.31, 126.92, 30.57 |
2p | 7.91(t, J=1.8 Hz, 1H),7.81—7.84(m, 1H),7.52—7.55(m, 1H),7.41(t, J=7.7 Hz, 1H), 2.59(s, 3H) | 196.58, 138.61, 134.91, 132.91, 129.86, 128.34, 126.31, 26.53 |
2q | 7.96(dt, J=8.6, 1.7 Hz, 2H), 7.59—7.51(m, 1H), 7.49—7.39(m, 2H), 2.60(s, 3H) | 198.13, 137.17, 133.10, 128.58, 128.31, 26.60 |
2r | 8.74(d, J=8.6 Hz, 1H), 7.92(ddd, J=25.7, 23.8, 8.2 Hz, 3H), 7.69—7.41(m, 3H), 2.74(s, 3H) | 201.84, 135.51, 134.01, 133.04, 130.18, 128.67, 128.43, 128.07, 126.46, 126.04, 124.35, 30.00 |
2s | 8.69(ddd, J=4.8, 1.6, 0.9 Hz, 1H), 8.05(dt, J=7.9, 1.1 Hz, 1H), 7.83(td, J=7.7, 1.7 Hz, 1H), 7.47(ddd, J=7.6, 4.8, 1.3 Hz, 1H), 2.73(s, 3H) | 200.10, 153.62, 148.98, 136.82, 127.06, 121.63, 25.76 |
2t | 7.77(d, J=7.7 Hz, 1H), 7.58(dd, J=7.4, 1.1 Hz, 1H), 7.50—7.44(m, 1H), 7.38(dd, J=10.9, 3.9 Hz, 1H), 3.23—3.06(m, 2H), 2.78—2.60(m, 2H) | 207.05, 155.16, 137.13, 134.60, 127.30, 126.71, 123.76, 36.24, 25.82 |
2u | 7.70(dd, J=3.8, 1.1 Hz, 1H), 7.64(dd, J=5.0, 1.1 Hz, 1H), 7.13(dd, J=5.0, 3.8 Hz, 1H), 2.62—2.49(m, 3H) | 190.71, 144.61, 133.76, 132.45, 128.11, 26.93 |
1 | Sood A., Panchagnula R., Chem. Rev., 2001, 101(11), 3275—3304 |
2 | Leeson P. D., Springthorpe B., Nat. Rev. Drug Disco., 2007, 6(11), 881—890 |
3 | Castral T. C., Matos A. P., Monteiro J. L., Araujo F. M., Bondancia T. M., Batista-Pereira L. G., Fernandes J. B., Vieira P. C., Da Silva M. F. G. F., Corrêa A. G., J. Agric. Food Chem., 2011, 59(9), 4822—4827 |
4 | Legacy C. J., Wang A., O’day B. J., Emmert M. H., Angew. Chem. Int. Ed., 2015, 54(49), 14907—14910 |
5 | Wu X. F., Bheeter C. B., Neumann H., Dixneuf P. H., Beller M., Chem. Commun., 2012, 48(100), 12237—12239 |
6 | Alfonsi K., Colberg J., Dunn P. J., Fevig T., Jennings S., Johnson T. A., Kleine H. P., Knight C., Nagy M. A., Perry D. A., Stefaniak M., Green Chem., 2008, 10(1), 31—36 |
7 | Wu X. F., Sharif M., Feng J. B., Neumann H., Pews⁃Davtyan A., Langer P., Beller M., Green Chem., 2013, 15(7), 1956—961 |
8 | Albright J. D., Goldman L., J. Am. Chem. Soc., 1965, 87(18), 4214—4216 |
9 | Huang W., Ma B. C., Lu H., Li R., Wang L., Landfester K., Zhang K. A., ACS Catal., 2017, 7(8), 5438—5442 |
10 | Xu X., Liu R., Cui Y., Liang X., Lei C., Meng S., Ma Y., Lei Z., Yang Z., Appl. Catal. B, 2017, 210, 484—494 |
11 | Gaster E., Kozuch S., Pappo D., Angew. Chem. Int. Ed., 2017, 56(21), 5912—5915 |
12 | Zhang M., Chen C., Ma W., Zhao J., Angew. Chem. Int. Ed., 2008, 47(50), 9730—9733 |
13 | Tsang A. S. K., Kapat A., Schoenebeck F., J. Am. Chem. Soc., 2016, 138(2), 518—526 |
14 | Tebben L., Studer A., Angew. Chem. Int. Ed., 2011, 50(22), 5034—5068 |
15 | Gogoi N., Borah G., Gogoi P. K., Chetia T. R., Chem. Phys. Lett., 2018, 692, 224—231 |
16 | Zhang X., Rakesh K., Ravindar L., Qin H. L., Green Chem., 2018, 20(21), 4790—4833 |
17 | Schilling W., Riemer D., Zhang Y., Hatami N., Das S., ACS Catal., 2018, 8(6), 5425—5430 |
18 | Lechner R., Kümmel S., König B., Photoch. Photobio. Sci., 2010, 9(10), 1367—1377 |
19 | Ohkubo K., Mizushima K., Iwata R., Souma K., Suzuki N., Fukuzumi S., Chem. Commun., 2010, 46(4), 601—603 |
[1] | LI Xiaoqian, ZHANG Hua, LU Haijian, LIU Chang, LIU Qinglong, MA Xiayu, FANG Yuanping, LIANG Dapeng. Mechanism of Photocatalytic Degradation of Rhodamine B by TiO2 Nanowire Array with Internal Extraction Electrospray Ionization Mass Spectrometry [J]. Chemical Journal of Chinese Universities, 2020, 41(9): 2003-2010. |
[2] | LI Li, LI Pengfei, WANG Bo. Photocatalytic Application of Covalent Organic Frameworks [J]. Chemical Journal of Chinese Universities, 2020, 41(9): 1917-1932. |
[3] | XU Wenyi,FENG Yisi. Oxidative Trifluoromethylation of CF3SO2Na with Olefins Mediated by Diacetyl† [J]. Chemical Journal of Chinese Universities, 2020, 41(7): 1567-1574. |
[4] | GAO Xia,PAN Huibin,QIAO Chengfang,CHEN Fengying,ZHOU Yuan,YANG Wenhua. Construction of HRP Immobilized Enzyme Reactor Based on Hierarchically Porous Metal-organic Framework and Its Dye Degradation Application† [J]. Chemical Journal of Chinese Universities, 2020, 41(7): 1591-1599. |
[5] | WANG Feifan, WANG Songbo, YAO Keyi, ZHANG Lei, DU Wei, CHENG Penggao, ZHANG Jianping, TANG Na. Construction and Photocatalytic Performance of Quantum Dots Self-decorated TiO2 p-n Homojunction† [J]. Chemical Journal of Chinese Universities, 2020, 41(7): 1615-1624. |
[6] | CAO Meng, LIU Yang, ZHANG Shangxi, WANG Zhenxi, XU Sheng. Synthesis and Photocatalytic Hydrogen Evolution Properties of Chitosan Cobalt Complex † [J]. Chemical Journal of Chinese Universities, 2020, 41(4): 735-741. |
[7] | LUO Wei, LIANG Youcai, HU Zhicheng, TANG Haoran, LIU Xiaocheng, XING Yetong, HUANG Fei. Preparation of Novel Hydrophilic Conjugated Polymers and Their Applicationin Photocatalytic Hydrogen Evolution [J]. Chemical Journal of Chinese Universities, 2020, 41(3): 456-464. |
[8] | HE Pengchen,ZHOU Jian,ZHOU Awu,DOU Yibo,LI Jianrong. MOFs-Based Materials for Photocatalytic CO2 Reduction† [J]. Chemical Journal of Chinese Universities, 2019, 40(5): 855-866. |
[9] | ZHANG Jubo,SUN Xiaohan,GAO Qiaojiao,WANG Haixin,LIANG Daxin,LIU Zhiming,HAN Guangting,JIANG Wei. Degradation of Organic Dyes over Regenerative Fe3O4/CuFeS2/Biomass Composite Column† [J]. Chemical Journal of Chinese Universities, 2019, 40(3): 425-430. |
[10] | ABUDUHEIREMU Awati,ZHANG Dedong,HALIDAN Maimaiti. Preparation and CO2 Reduction Performance of Composite Photocatalyst Based on Aminated Coal-based Carbon Dots† [J]. Chemical Journal of Chinese Universities, 2019, 40(2): 306-316. |
[11] | SUN Dawei,LI Yuejun,CAO Tieping,ZHAO Yanhui,YANG Diankai. Preparation of Dy 3+-doped YVO4/TiO2 Composite Nanofibers with Three-dimensional Net-like Structure and Enhanced Photocatalytic Activity for Hydrogen Evolution † [J]. Chemical Journal of Chinese Universities, 2019, 40(11): 2348-2353. |
[12] | WU Zhiqiang, LIU Wanyi, WANG Gang, CAI Wei, YUE Xiaofei, ZHAN Haijuan, BI Shuxian, MENG Zhe, MA Baojun. Preparation of Protonated g-C3N4/β-SiC Composites and Photocatalytic Degradation of Alizarin Red S [J]. Chemical Journal of Chinese Universities, 2019, 40(10): 2178-2185. |
[13] | GAN Lu,DONG Yongchun. Photocatalytic Performance of Fe-complexes Prepared Using Cotton Fiber Modified with Different Dicarboxylic Acids [J]. Chemical Journal of Chinese Universities, 2019, 40(10): 2205-2213. |
[14] | ZHANG Jing,DONG Yuming,LIU Xiang,LI Hexing. Synthesis and Photocatalytic Activity of Z-Scheme Photocatalyst Sb2WO6/g-C3N4 † [J]. Chemical Journal of Chinese Universities, 2019, 40(1): 123-129. |
[15] | YU Chengxin, LIU Yangyang, ZHANG Xia. Preparation of Cu-BTC/PVDF Hybrid Membranes Using in situ Doping Method and Their Enhanced Dye Adsorption Properties† [J]. Chemical Journal of Chinese Universities, 2018, 39(7): 1384-1391. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||