Chem. J. Chinese Universities ›› 2019, Vol. 40 ›› Issue (12): 2471.doi: 10.7503/cjcu20190402
• Analytical Chemistry • Previous Articles Next Articles
Received:
2019-07-19
Online:
2019-12-04
Published:
2019-12-04
Contact:
Miao LIU
E-mail:liumiao@jlu.edu.cn
Supported by:
CLC Number:
TrendMD:
Luze YANG,Miao LIU. 3D-QSAR Model of Polybrominated Biphenyls Tri-effect Modified by Standard Deviation Standardization Method and Its Application in Environmental Friendly Molecular Modification †[J]. Chem. J. Chinese Universities, 2019, 40(12): 2471.
Model | q2 | n | SEE | R2 | F | SEP | Q2 | cSDEP | dq2/dr2yy | |
---|---|---|---|---|---|---|---|---|---|---|
CoMFA | 0.51 | 8 | 0.18 | 0.94 | 28.38 | 0.63 | 0.35 | 0.18 | 0.64 | 1.19 |
Model | q2 | n | SEE | R2 | F | SEP | Q2 | cSDEP | dq2/dr2yy | |
---|---|---|---|---|---|---|---|---|---|---|
CoMFA | 0.51 | 8 | 0.18 | 0.94 | 28.38 | 0.63 | 0.35 | 0.18 | 0.64 | 1.19 |
No. | Compound | Structure | Comprehensive value of three properties | Change rate(%) |
---|---|---|---|---|
0 | PBB-153 | ![]() | 1.15 | — |
1 | R2-(CH2)3NO2-PBB-153 | ![]() | 1.38 | 20.71 |
2 | R2-C2H5-R4-CH2NO2-PBB-153 | ![]() | 1.26 | 9.63 |
3 | R2-C2H5-R4-(CH2)2NO2-PBB-153 | ![]() | 1.95 | 69.81 |
4 | R2-(CH2)2NO2-R4-C2H5-PBB-153 | ![]() | 1.52 | 32.3 |
5 | R2-(CH2)2NO2-R4-(CH2)3NO2-PBB-153 | ![]() | 1.38 | 20.18 |
6 | R2-(CH2)2NO2-R4-(CH2)4NO2-PBB-153 | ![]() | 1.84 | 60.65 |
No. | Compound | Structure | Comprehensive value of three properties | Change rate(%) |
---|---|---|---|---|
0 | PBB-153 | ![]() | 1.15 | — |
1 | R2-(CH2)3NO2-PBB-153 | ![]() | 1.38 | 20.71 |
2 | R2-C2H5-R4-CH2NO2-PBB-153 | ![]() | 1.26 | 9.63 |
3 | R2-C2H5-R4-(CH2)2NO2-PBB-153 | ![]() | 1.95 | 69.81 |
4 | R2-(CH2)2NO2-R4-C2H5-PBB-153 | ![]() | 1.52 | 32.3 |
5 | R2-(CH2)2NO2-R4-(CH2)3NO2-PBB-153 | ![]() | 1.38 | 20.18 |
6 | R2-(CH2)2NO2-R4-(CH2)4NO2-PBB-153 | ![]() | 1.84 | 60.65 |
Compound | Highest infrared vibration intensity | Change rate(%) | BCF | Change rate(%) | lgLC50 | Change rate(%) |
---|---|---|---|---|---|---|
PBB-153 | 688.69 | — | 4814 | — | -3.66 | — |
R2-(CH2)3NO2-PBB-153 | 777.68 | 12.92 | 1619 | 66.37 | -3.45 | 5.78 |
R2-C2H5-R4-CH2NO2-PBB-153 | 983.34 | 42.78 | 4147 | 13.86 | -2.76 | 24.70 |
R2-C2H5-R4-(CH2)2NO2-PBB-153 | 855.31 | 24.19 | 2383 | 50.50 | -3.19 | 12.92 |
R2-(CH2)2NO2-R4-C2H5-PBB-153 | 794.56 | 15.37 | 2383 | 50.50 | -3.19 | 12.92 |
R2-(CH2)2NO2-R4-(CH2)3NO2-PBB-153 | 1523.49 | 121.22 | 3651 | 24.16 | -2.81 | 23.34 |
R2-(CH2)2NO2-R4-(CH2)4NO2-PBB-153 | 1581.47 | 129.63 | 2098 | 56.42 | -3.24 | 11.59 |
Compound | Highest infrared vibration intensity | Change rate(%) | BCF | Change rate(%) | lgLC50 | Change rate(%) |
---|---|---|---|---|---|---|
PBB-153 | 688.69 | — | 4814 | — | -3.66 | — |
R2-(CH2)3NO2-PBB-153 | 777.68 | 12.92 | 1619 | 66.37 | -3.45 | 5.78 |
R2-C2H5-R4-CH2NO2-PBB-153 | 983.34 | 42.78 | 4147 | 13.86 | -2.76 | 24.70 |
R2-C2H5-R4-(CH2)2NO2-PBB-153 | 855.31 | 24.19 | 2383 | 50.50 | -3.19 | 12.92 |
R2-(CH2)2NO2-R4-C2H5-PBB-153 | 794.56 | 15.37 | 2383 | 50.50 | -3.19 | 12.92 |
R2-(CH2)2NO2-R4-(CH2)3NO2-PBB-153 | 1523.49 | 121.22 | 3651 | 24.16 | -2.81 | 23.34 |
R2-(CH2)2NO2-R4-(CH2)4NO2-PBB-153 | 1581.47 | 129.63 | 2098 | 56.42 | -3.24 | 11.59 |
Compound | lgt1/2(air) | Change rate(%) | lgt1/2(river) | Change rate(%) |
---|---|---|---|---|
PBB-153 | 1.92 | — | 2.82 | — |
R2-(CH2)3NO2-PBB-153 | 1.64 | 14.64 | 2.38 | 15.71 |
R2-C2H5-R4-CH2NO2-PBB-153 | 1.35 | 29.64 | 2.14 | 23.97 |
R2-C2H5-R4-(CH2)2NO2-PBB-153 | 1.12 | 41.93 | 1.80 | 36.28 |
R2-(CH2)2NO2-R4-C2H5-PBB-153 | 1.33 | 30.57 | 1.93 | 31.60 |
R2-(CH2)2NO2-R4-(CH2)3NO2-PBB-153 | 1.26 | 34.32 | 1.86 | 34.11 |
R2-(CH2)2NO2-R4-(CH2)4NO2-PBB-153 | 1.31 | 31.56 | 1.91 | 32.27 |
Compound | lgt1/2(air) | Change rate(%) | lgt1/2(river) | Change rate(%) |
---|---|---|---|---|
PBB-153 | 1.92 | — | 2.82 | — |
R2-(CH2)3NO2-PBB-153 | 1.64 | 14.64 | 2.38 | 15.71 |
R2-C2H5-R4-CH2NO2-PBB-153 | 1.35 | 29.64 | 2.14 | 23.97 |
R2-C2H5-R4-(CH2)2NO2-PBB-153 | 1.12 | 41.93 | 1.80 | 36.28 |
R2-(CH2)2NO2-R4-C2H5-PBB-153 | 1.33 | 30.57 | 1.93 | 31.60 |
R2-(CH2)2NO2-R4-(CH2)3NO2-PBB-153 | 1.26 | 34.32 | 1.86 | 34.11 |
R2-(CH2)2NO2-R4-(CH2)4NO2-PBB-153 | 1.31 | 31.56 | 1.91 | 32.27 |
Compound | Frequency/cm-1 | Energy gap/a.u. | Change rate (%) | Dissociation enthalpy/ (kJ·mol-1) | Change rate(%) |
---|---|---|---|---|---|
PBB-153 | 20.27 | 0.192 | — | 348.49 | — |
R2-(CH2)3NO2-PBB-153 | 12.72 | 0.186 | -3.33 | 358.02 | 2.73 |
R2-C2H5-R4-CH2NO2-PBB-153 | 18.60 | 0.188 | -1.98 | 357.68 | 2.64 |
R2-C2H5-R4-(CH2)2NO2-PBB-153 | 17.91 | 0.185 | -3.77 | 351.96 | 0.99 |
R2-(CH2)2NO2-R4-C2H5-PBB-153 | 14.34 | 0.186 | -3.23 | 359.31 | 3.10 |
R2-(CH2)2NO2-R4-(CH2)3NO2-PBB-153 | 12.96 | 0.189 | -1.89 | 359.31 | 3.11 |
R2-(CH2)2NO2-R4-(CH2)4NO2-PBB-153 | 12.78 | 0.189 | -1.87 | 359.15 | 3.06 |
Compound | Frequency/cm-1 | Energy gap/a.u. | Change rate (%) | Dissociation enthalpy/ (kJ·mol-1) | Change rate(%) |
---|---|---|---|---|---|
PBB-153 | 20.27 | 0.192 | — | 348.49 | — |
R2-(CH2)3NO2-PBB-153 | 12.72 | 0.186 | -3.33 | 358.02 | 2.73 |
R2-C2H5-R4-CH2NO2-PBB-153 | 18.60 | 0.188 | -1.98 | 357.68 | 2.64 |
R2-C2H5-R4-(CH2)2NO2-PBB-153 | 17.91 | 0.185 | -3.77 | 351.96 | 0.99 |
R2-(CH2)2NO2-R4-C2H5-PBB-153 | 14.34 | 0.186 | -3.23 | 359.31 | 3.10 |
R2-(CH2)2NO2-R4-(CH2)3NO2-PBB-153 | 12.96 | 0.189 | -1.89 | 359.31 | 3.11 |
R2-(CH2)2NO2-R4-(CH2)4NO2-PBB-153 | 12.78 | 0.189 | -1.87 | 359.15 | 3.06 |
Eq. | SCi | Freq. | a | μ | q+ | q- | qH+ | EHOMO | ELUMO | lgP | V | N2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(3) | y | -50.94 | 319.73 | -130.4 | -13.91 | -45.23 | 23.28 | -2686.7 | 82.77 | -79.15 | 429.63 | -31.34 |
(4) | lgIR | 0.02 | 0 | -0.05 | -0.01 | -0.03 | -0.04 | -0.97 | 0.05 | -0.05 | 0.31 | -0.003 |
(5) | -lgBCF | -0.14 | 0 | -0.03 | 0.04 | -0.01 | 0.2 | 0.07 | -0.02 | 0.04 | 0 | -0.05 |
(6) | lgLC50 | -0.02 | 0 | -0.02 | -0.02 | -0.004 | -0.11 | -0.38 | 0.18 | 0.02 | -0.88 | -0.01 |
Eq. | SCi | Freq. | a | μ | q+ | q- | qH+ | EHOMO | ELUMO | lgP | V | N2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(3) | y | -50.94 | 319.73 | -130.4 | -13.91 | -45.23 | 23.28 | -2686.7 | 82.77 | -79.15 | 429.63 | -31.34 |
(4) | lgIR | 0.02 | 0 | -0.05 | -0.01 | -0.03 | -0.04 | -0.97 | 0.05 | -0.05 | 0.31 | -0.003 |
(5) | -lgBCF | -0.14 | 0 | -0.03 | 0.04 | -0.01 | 0.2 | 0.07 | -0.02 | 0.04 | 0 | -0.05 |
(6) | lgLC50 | -0.02 | 0 | -0.02 | -0.02 | -0.004 | -0.11 | -0.38 | 0.18 | 0.02 | -0.88 | -0.01 |
[1] |
Wang R., Tang T., Feng S. Y., Chen X. W., Dang D., Huang K. B., Tao X. Q., Yin H., Dang Z., Lu G. N ., Chemosphere, 2018,212, 1— 7
doi: 10.1016/j.chemosphere.2018.08.063 URL pmid: 30130655 |
[2] |
Fernandez M. F., Araque P., Kiviranta H., Molina-Molina J. M., Rantakokko P., Laine O., Vartiainen T., Olea N ., Chemosphere, 2007,66(2), 377— 383
doi: 10.1016/j.chemosphere.2006.04.065 URL |
[3] |
Zheng X. Y., Yu J. Z., Xu X. Y., Yu H. B., Chen Y., Tan L., Lv Y. B ., Chinese J. Chromatography, 2015,3(10), 1071— 1079
doi: 10.3724/sp.j.1123.2015.05018 URL pmid: 26930965 |
( 郑晓燕, 于建钊, 许秀艳, 于海斌, 陈烨, 谭丽, 吕怡兵 . 色谱, 2015,3(10), 1071— 1079)
doi: 10.3724/sp.j.1123.2015.05018 URL pmid: 26930965 |
|
[4] | Liu G. R., Li L., Sun S. F., Jiang X. X., Wang M., Zheng M. H ., Progress Chem., 2014,1(8), 1434— 1444 |
( 刘国瑞, 李丽, 孙素芳, 姜晓旭, 王美, 郑明辉 . 化学进展, 2014,1(8), 1434— 1444) | |
[5] |
De Wit C. A ., Chemosphere, 2002,46, 583— 624
doi: 10.1016/S0045-6535(01)00225-9 URL |
[6] | Getty S. M., Rickert D. E., Trapp A. L., Buck W. B ., Crit. Rev. Environ. Contro., 1977,17, 309— 324 |
[7] | Zhang J. P ., Pesticide Market News, 2015, ( 23), 19— 20 |
( 张金平 . 农药市场信息, 2015, ( 23), 19— 20) | |
[8] |
Safe S ., Crit. Rev. Toxico., 1984,13(4), 319— 395
doi: 10.3109/10408448409023762 URL pmid: 6091997 |
[9] |
Kebede K. K., Jonathan O. O., Ben M. B ., Sci. Total Environ., 2014,470, 1250— 1256
doi: 10.1016/j.scitotenv.2013.10.078 URL |
[10] |
Rosen D. H., Flanders W. D., Friede A., Humphrey H. E. B., Sinks T. H ., Environ. Health Perspect., 1995,103(3), 272— 274
doi: 10.1289/ehp.95103272 URL pmid: 7768229 |
[11] | Zhao G., Wang Z., Zhou H., Zhao Q., Sci. Total Environ ., 2009,407(17), 4831— 4837 |
[12] |
Herzke D., Berger U., Kallenborn R., Nygard T., Vetter W ., Chemosphere, 2005,61(3), 441— 449
doi: 10.1016/j.chemosphere.2005.01.066 URL |
[13] |
John K. M., Wen J. L., Lin C. W., Ping J. S., Lee S. F., Yen Y. L., Chang-Chien G. P ., Environ. Pollut., 2016,216, 924— 934
doi: 10.1016/j.envpol.2016.07.001 URL pmid: 27400905 |
[14] | Zhu J. W., Geng C. Z., Zhang L. Z., Yang Y. L ., Environ. Sci. Techno., 2012,25(5), 62— 67 |
( 朱婧文, 耿存珍, 张丽珠, 杨永亮 . 环境科技, 2012,25(5), 62— 67) | |
[15] |
Birnbaum L. S., Staskal D. F ., Environ. Health Perspect., 2003,112(1), 9— 17
doi: 10.1289/ehp.6559 URL pmid: 14698924 |
[16] |
Waaijers S. L., Parsons J. R ., Curr. Opin. Biotechno., 2016,38, 14— 23
doi: 10.1016/j.copbio.2015.12.005 URL pmid: 26748263 |
[17] |
Maftei D., Isac D. L., Dumitraş M., Bucur Ş, Dîrţu A. C ., Struct. Chem., 2018,29(3), 921— 927
doi: 10.1007/s11224-018-1078-4 URL |
[18] |
Grause G., Karakita D., Kameda T., Bhaskar T., Yoshioka T ., J. Mater. Cycle Waste Manage., 2012,14(3), 259— 265
doi: 10.1007/s10163-012-0067-8 URL |
[19] | Shi Y. J., Zhou Y. X., Zhu G. H., Li M. F., Gong H. P., Liu J. S ., Environ. Chem., 2018,37(9), 1994— 2001 |
( 石银俊, 周衍霄, 朱国华, 李沐霏, 巩宏平, 刘劲松 . 环境化学, 2018,37(9), 1994— 2001) | |
[20] | Zhang R., Zhang Z. H., Liu Z. X., Liang J. L., Li J. M., Xian L. Y ., Chinese J. Analysis Laboratory, 2014,33(1), 73— 77 |
( 张瑞, 张志辉, 刘卓钦, 梁金玲, 黎嘉明, 冼丽英 . 分析试验室, 2014,33(1), 73— 77) | |
[21] |
Pei Y. X., Li H. Q., Liu H. T., Zhang Y ., Chem. J. Chinese Universities, 2012,33(3), 598— 603
doi: 10.3969/j.issn.0251-0790.2012.03.031 URL |
( 裴义霞, 李会泉, 柳海涛, 张懿 . 高等学校化学学报, 2012,33(3), 598— 603)
doi: 10.3969/j.issn.0251-0790.2012.03.031 URL |
|
[22] | Yang Y. S ., Low Carbon World, 2014, ( 13), 309— 310 |
( 杨永舒 . 低碳世界, 2014, ( 13), 309— 310) | |
[23] | Xiao D. H., Xiao Q., Zhou M. H., Liu Y. F., Zhai C. P., Zheng J. G ., China Plastics, 2005, ( 12), 74— 78 |
( 萧达辉, 肖前, 周明辉, 刘莹峰, 翟翠萍, 郑建国 . 中国塑料, 2005, ( 12), 74— 78) | |
[24] |
Wang Z. C., Qin Y J., Wang P. F., Yang Y. A., Wen Q., Zhang X., Qiu H. Y., Duan Y. T., Wang Y. T., Sang Y. L., Zhu H. L ., Eur. J. Med. Chem., 2013,66(15), 1— 11
doi: 10.1016/j.ejmech.2013.04.035 URL |
[25] |
Sabljic A., Gusten H., Verhaar H., Hermens J ., Chemosphere, 1995,31, 4489— 4514
doi: 10.1016/0045-6535(95)00327-5 URL |
[26] |
Arnot J. A., Gobas F. A. P. C ., QSAR & Combinator. Sci., 2003,22(3), 337— 345
doi: 10.1016/j.ejmech.2019.111938 URL pmid: 31830634 |
[27] | Li W. M., Yin D. Q., Li S. Y., Wang X. J., Wang L. S ., Res. Environ. Sci., 2002,15(2), 6— 7 |
( 李伟民, 尹大强, 李时银, 王学江, 王连生 . 环境科学研究, 2002,15(2), 6— 7 | |
[28] |
Li F., Li X. H., Liu X. L., Zhang L B., You L. P., Zhao J. M., Wu H. F ., Environ. Toxico. Pharmacol., 2011,32(3), 478— 485
doi: 10.1016/j.etap.2011.09.001 URL pmid: 22004969 |
[29] |
Zhao Y. Y., Li Y ., Ecotoxicol. Environ. Saf., 2018,164, 467— 473
doi: 10.1016/j.ecoenv.2018.08.055 URL pmid: 30144707 |
[30] |
Zhao X. H., Wang X. L., Li Y ., Chem. Central J., 2018,12(1), 1— 12
doi: 10.1186/s13065-017-0364-3 URL |
[31] |
Wang X. L., Chu Z. H., Yang J. W., Li Y ., Environ. Sci. Pollut. Res., 2017,24(32), 25114— 25125
doi: 10.1007/s11356-017-0129-5 URL pmid: 28921381 |
[32] |
Jiang L., Li Y ., J. Hazard. Mater., 2016,307, 202— 212
doi: 10.1016/j.jhazmat.2015.12.031 URL pmid: 26785211 |
[33] |
Gu W. W., Chen Y., Zhang L., Li Y ., Human & Eco. Risk Assessm., 2016,23(1), 40— 50
doi: 10.1002/mgg3.1057 URL pmid: 31829542 |
[34] | Qiu Y. L., Xin M. L., Li Y ., Spectrosc. Spectra. Anal., 2018,38(2), 441— 447 |
( 邱尤丽, 辛美玲, 李鱼 . 光谱学与光谱分析, 2018,38(2), 441— 447) | |
[35] | Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J ., Gaussian 09, Revision A.02, Gaussian Inc., Wallingford CT, 2009 |
[36] |
Sripriya N., Kumar M. R., Karthick N. A., Bhuvaneswari S., Prakash N. K. U ., Drug Chem. Toxicol., 2019, 1— 7
doi: 10.1080/01480545.2019.1701487 URL pmid: 31826669 |
[37] |
Guo Q. Z., Du Z. X., Shao B ., J. Hazard. Mater., 2018,359, 31— 39
doi: 10.1016/j.jhazmat.2018.07.024 URL pmid: 30014912 |
[38] |
Noreldeen H. A. A., Liu X. Y., Wang X. L., Fu Y. Q., Li Z. F., Lu X., Zhao C. X., Xu G. W ., Int. J. Mass Spectrom., 2018,434, 172— 178
doi: 10.1016/j.ijms.2018.09.022 URL |
[39] |
Zhang Y. L., Zhang G ., Chinese J. Org. Chem., 2014,34(1), 178— 189
doi: 10.6023/cjoc201306040 URL |
( 张贻亮, 张钢 . 有机化学, 2014,34(1), 178— 189)
doi: 10.6023/cjoc201306040 URL |
|
[40] | Hu J. C ., Study on QSAR and Molecular Design of Efficient Organic Corrosion Inhibitors, China University of Petroleum, Qingdao, 2010 |
( 胡建春 . 高效有机缓蚀剂的构效关系研究及分子设计, 青岛: 中国石油大学, 2010) | |
[41] |
Qu R. J., Liu J. Q., Li C. G., Wang L. S., Wang Z. Y., Wu J. C ., Water Res., 2016,104, 34— 43
doi: 10.1016/j.watres.2016.07.071 URL pmid: 27508972 |
[42] |
Ren Z. X., Wang Y. W., Xu H. H., Li Y. F., Han S ., Int. J Environ. Res. Pub. Health, 2019,16(17), 1— 20
doi: 10.3390/ijerph16010001 URL |
[43] | Zhao X. H., Chu Z. H., Li Y ., Chem. J. Chinese Universities, 2018,39(12), 2707— 2718 |
( 赵晓辉, 褚振华, 李鱼 . 高等学校化学学报, 2018,39(12), 2707— 2718) | |
[44] |
Pick A., Müller H., Mayer R., Haenisch B., Pajeva I. K., Weigt M., Bönisch H., Müller C. E., Wiese M ., Bioorg. Med. Chem., 2011,19(6), 2090— 2102
doi: 10.1016/j.bmc.2010.12.043 URL pmid: 21354800 |
[45] | Nie C. M ., J. Wuhan University(Nat. Sci. Edition), 2000,46(2), 176— 180 |
( 聂长明 . 武汉大学学报(理学版), 2000,46(2), 176— 180) | |
[46] | Guo J. X ., Density Functional Theory Study on the Structure and Properties of CumXn(X=Se,Te; m+n≤5) Clusters, University of Electronic Science and Technology of China, Chengdu, 2018 |
( 郭家兴 . CumXn(X=Se,Te; m+n≤5)团簇结构和性质的密度泛函理论研究, 成都: 电子科技大学, 2018) | |
[47] | He X. J., Lao X. S ., J. Hebei University of Water Res. Elect. Eng., 1993,( 2), 12— 19 |
( 何希杰, 劳学苏 . 河北工程技术高等专科学校学报, 1993,( 2), 12— 19) | |
[48] | Zhu H. B ., Application Statistics and SPSS Applications, Publishing House of Electronics Industry, Beijing, 2011 |
( 朱红兵 . 应用统计与SPSS应用 北京:, 电子工业出版社, 2011) |
[1] | WANG Xueli, SONG Xiangwei, XIE Yanning, DU Niyang, WANG Zhenxin. Preparation, Characterization of Partially Reduced Graphene Oxide and Its Killing Effect on Human Cervical Cancer Cells [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210595. |
[2] | LIU Hong,ZOU Guojun,SUN Xinyuan,OUYANG Jianming. Differences of Growth and Cytotoxicity of Calcium Oxalate Crystals Formed on HK-2 Cells Under Different Oxalic Acid/Calcium Ratios [J]. Chem. J. Chinese Universities, 2020, 41(6): 1231. |
[3] | CHANG Junpeng,ZHAO Jiarui,CHEN Sijia,MENG Kai,SHI Weini,LI Ruifang. Structure-activity Relationship of Antimicrobial Peptide SAMP1 and Its Analog Peptides† [J]. Chem. J. Chinese Universities, 2019, 40(4): 705. |
[4] | ZHAO Xiaohui,CHU Zhenhua,LI Yu. Molecular Design of Lower Photodegradation Fluoroquinolone Antibiotics and Their Photolysis Paths Inference† [J]. Chem. J. Chinese Universities, 2018, 39(12): 2707. |
[5] | WANG Fengjiao, LI Xuelian, HU Mancheng, LI Shuni, ZHAI Quanguo, JIANG Yucheng. Cascade Biodegradation of Organic Pesticide Isoproturon [J]. Chem. J. Chinese Universities, 2017, 38(8): 1362. |
[6] | LUO Zewei, WANG Yimin, LIU Kunping, WEI Fujing, LI Yu, DUAN Yixiang. Preparation of a Functionalized Graphene and Its Role as Delivery Carrier for Anti-cancer Drug† [J]. Chem. J. Chinese Universities, 2016, 37(10): 1900. |
[7] | ZHANG Jianghua, LÜ Ying, JIA Hongliang, SONG Yinyin, SUN Xiaoxia, CHAI Dunxiao, WANG Lanying. Synthesis, Crystal Structure and Spectral Properties of Six Indole Dimethine Cyanines as Well as Their Biological Application† [J]. Chem. J. Chinese Universities, 2015, 36(10): 1924. |
[8] | ZHENG Yongbiao, PANG Haiyue, WANG Jifeng, CHEN Danxia, SHI Guowei, HUANG Jianzhong. Novel Diketopiperazine and Ten-membered Macrolides from the Entomogenous Fungus Paecilomyces tenuipes† [J]. Chem. J. Chinese Universities, 2014, 35(8): 1665. |
[9] | ZENG Li, Hu Jun, WEI Junchao. Controlled Release of Multiple Hydrophilic and Hydrophobic Drugs and in vitro Cytotoxicity of Electrospun Poly(lactic-co-glycolic acid)/ZnO Nanofibers Encapsulated with Dual Drugs† [J]. Chem. J. Chinese Universities, 2014, 35(8): 1788. |
[10] | ZHANG Ruixing, LIU Shu, PI Zifeng, SONG Fengrui, LIU Zhiqiang. Cell Metabolomics Study of Hg(Ⅱ) Ion Effect on the Metabolic Pathways of Cells [J]. Chem. J. Chinese Universities, 2014, 35(6): 1146. |
[11] | KANG Congmin, ZHAO Xuhao, YU Yuqi, LÜ Yingtao. De novo Design of Indole Derivatives as VEGFR-2 Tyrosine Kinase Inhibitors† [J]. Chem. J. Chinese Universities, 2014, 35(3): 550. |
[12] | SUN Kunlun, WU Nan, YANG Huan, YANG Xiaofeng, LI Hua. Independent Component Analysis Combined with On-line Infrared Spectroscopy for Researching the Synthesis Reaction Mechanism of 3,4-Bis(4'-aminofurazano-3')furoxan† [J]. Chem. J. Chinese Universities, 2014, 35(2): 244. |
[13] | WANG Hai, ZHANG Chao, ZHANG Linhua, LIU Lanxia, ZHENG Yi, ZHU Dunwan. Synthesis of Nanoparticles of Star-shaped Mannitol-core PLA-TPGS Copolymer for Delivery of Paclitaxel and Activity of Anti-prostate Cancer† [J]. Chem. J. Chinese Universities, 2014, 35(10): 2239. |
[14] | XU Yu-Dong, ZHANG Zheng-Yong, KONG Ji-Lie, LI Guo-Dong, XIONG Huan-Ming. Photoluminescent ZnO Quantum Dots Coated by Polymethacrylamide and Their Application in Cell Imaging [J]. Chem. J. Chinese Universities, 2013, 34(7): 1565. |
[15] | YU Lan-Lan, RAN Yu, BAI Xi-Xi, LI Ai-Rong, ZHU Yan-Yan, QIN Yun, QU Ling-Bo. Design and Bioactivity of Novel Antimicrobial Peptides and Its Computer Simulation with Phospholipid [J]. Chem. J. Chinese Universities, 2012, 33(12): 2681. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||