Chem. J. Chinese Universities ›› 2019, Vol. 40 ›› Issue (6): 1222.doi: 10.7503/cjcu20180844
• Physical Chemistry • Previous Articles Next Articles
LIU Xinchao, ZHAO Yarong, YUAN Zhenyan, ZHOU Dan(), LU Xinhuan, XIA Qinghua(
)
Received:
2018-12-17
Online:
2019-06-10
Published:
2019-04-04
Supported by:
CLC Number:
TrendMD:
LIU Xinchao,ZHAO Yarong,YUAN Zhenyan,ZHOU Dan,LU Xinhuan,XIA Qinghua. Controllable Synthesis of Ti-Beta Zeolite and Efficiently Catalytic Epoxidation of Cyclohexene†[J]. Chem. J. Chinese Universities, 2019, 40(6): 1222.
No. | n(H2O)/n(SiO2) | n(NaOH)/n(SiO2) | n(HF)/n(SiO2) | n(TEAOH)/n(SiO2) | Crystalline phasea | Crystallinityb(%) |
---|---|---|---|---|---|---|
1 | 1.0 | 0.01 | 0.3 | 0.45 | — | — |
2 | 1.2 | 0.01 | 0.3 | 0.45 | BEA | 98 |
3 | 1.5 | 0.01 | 0.3 | 0.45 | BEA | 100 |
4 | 2.0 | 0.01 | 0.3 | 0.45 | — | — |
5 | 3.0 | 0.01 | 0.3 | 0.45 | — | — |
6 | 1.5 | 0 | 0.3 | 0.45 | BEA | 63 |
7 | 1.5 | 0.05 | 0.3 | 0.45 | BEA | 97 |
8 | 1.5 | 0.015 | 0.3 | 0.45 | BEA | 75 |
9 | 1.5 | 0.01 | 0 | 0.45 | — | — |
10 | 1.5 | 0.01 | 0.15 | 0.45 | — | — |
11 | 1.5 | 0.01 | 0.4 | 0.45 | BEA | 99 |
12 | 1.5 | 0.01 | 0.3 | 0.15 | — | — |
13 | 1.5 | 0.01 | 0.3 | 0.25 | BEA | 89 |
14 | 1.5 | 0.01 | 0.3 | 0.35 | BEA | 99 |
16 | 1.5 | 0.01 | 0.3 | 0.5 | BEA | 92 |
Table 1 Synthesis results under different molar compositions
No. | n(H2O)/n(SiO2) | n(NaOH)/n(SiO2) | n(HF)/n(SiO2) | n(TEAOH)/n(SiO2) | Crystalline phasea | Crystallinityb(%) |
---|---|---|---|---|---|---|
1 | 1.0 | 0.01 | 0.3 | 0.45 | — | — |
2 | 1.2 | 0.01 | 0.3 | 0.45 | BEA | 98 |
3 | 1.5 | 0.01 | 0.3 | 0.45 | BEA | 100 |
4 | 2.0 | 0.01 | 0.3 | 0.45 | — | — |
5 | 3.0 | 0.01 | 0.3 | 0.45 | — | — |
6 | 1.5 | 0 | 0.3 | 0.45 | BEA | 63 |
7 | 1.5 | 0.05 | 0.3 | 0.45 | BEA | 97 |
8 | 1.5 | 0.015 | 0.3 | 0.45 | BEA | 75 |
9 | 1.5 | 0.01 | 0 | 0.45 | — | — |
10 | 1.5 | 0.01 | 0.15 | 0.45 | — | — |
11 | 1.5 | 0.01 | 0.4 | 0.45 | BEA | 99 |
12 | 1.5 | 0.01 | 0.3 | 0.15 | — | — |
13 | 1.5 | 0.01 | 0.3 | 0.25 | BEA | 89 |
14 | 1.5 | 0.01 | 0.3 | 0.35 | BEA | 99 |
16 | 1.5 | 0.01 | 0.3 | 0.5 | BEA | 92 |
Sample | n(SiO2)∶n(TiO2)∶n(TEAOH)∶n(NaOH)∶ n(HF)∶n(H2O) | XPS result(molar ratio) | SBET/(m2·g-1) | Conv.(%) | Sel.(%) | Yield(%) | ||
---|---|---|---|---|---|---|---|---|
Si/Ti | Si/Na | Si/Al | ||||||
Ti-Beta-1 | 1.0∶0.03∶0.45∶0.01∶0.3∶1.5 | 23 | 57 | ∞ | 403 | 33.5 | 99.8 | 33.4 |
Ti-Beta-2 | 1.0∶0.03∶0.45∶0.01∶0.3∶1.2 | 9 | 52 | ∞ | 339 | 23.3 | 99.6 | 23.2 |
Ti-Beta-3 | 1.0∶0.03∶0.45∶0.005∶0.3∶1.5 | 17 | 59 | ∞ | 385 | 32.4 | 94.3 | 30.6 |
Ti-Beta-4 | 1.0∶0.03∶0.45∶0.01∶0.4∶1.5 | 34 | 90 | ∞ | 32 | 1.2 | 92.3 | 1.1 |
Ti-Beta-5 | 1.0∶0.03∶0.35∶0.01∶0.3∶1.5 | 7 | 31 | ∞ | 355 | 25.6 | 94.4 | 24.2 |
Ti-Beta-6 | 1.0∶0.03∶0.50∶0.01∶0.3∶1.5 | 36 | 85 | ∞ | 199 | 0.2 | 93.6 | 0.2 |
Table 2 Physico-chemical properties of Ti-Beta catalysts and cyclohexene epoxidation results*
Sample | n(SiO2)∶n(TiO2)∶n(TEAOH)∶n(NaOH)∶ n(HF)∶n(H2O) | XPS result(molar ratio) | SBET/(m2·g-1) | Conv.(%) | Sel.(%) | Yield(%) | ||
---|---|---|---|---|---|---|---|---|
Si/Ti | Si/Na | Si/Al | ||||||
Ti-Beta-1 | 1.0∶0.03∶0.45∶0.01∶0.3∶1.5 | 23 | 57 | ∞ | 403 | 33.5 | 99.8 | 33.4 |
Ti-Beta-2 | 1.0∶0.03∶0.45∶0.01∶0.3∶1.2 | 9 | 52 | ∞ | 339 | 23.3 | 99.6 | 23.2 |
Ti-Beta-3 | 1.0∶0.03∶0.45∶0.005∶0.3∶1.5 | 17 | 59 | ∞ | 385 | 32.4 | 94.3 | 30.6 |
Ti-Beta-4 | 1.0∶0.03∶0.45∶0.01∶0.4∶1.5 | 34 | 90 | ∞ | 32 | 1.2 | 92.3 | 1.1 |
Ti-Beta-5 | 1.0∶0.03∶0.35∶0.01∶0.3∶1.5 | 7 | 31 | ∞ | 355 | 25.6 | 94.4 | 24.2 |
Ti-Beta-6 | 1.0∶0.03∶0.50∶0.01∶0.3∶1.5 | 36 | 85 | ∞ | 199 | 0.2 | 93.6 | 0.2 |
Solvent | Conv.(%) | Sel.(%) | Yield(%) |
---|---|---|---|
Methanol | 33.5 | 99.6 | 33.4 |
Acetone | 16.2 | 92.2 | 14.9 |
Acetonitrile | 12.3 | 96.2 | 11.8 |
Ethanol | 18.4 | 90.2 | 16.6 |
1,4-Dioxane | 1.2 | 54.6 | 0.7 |
1,2-Dichloroethane | 2.2 | 52.3 | 1.2 |
Ethyl acetate | 8.1 | 1.5 | 0.1 |
Table 3 Effect of solvent on the epoxidation of cyclohexene over Ti-Beta-1*
Solvent | Conv.(%) | Sel.(%) | Yield(%) |
---|---|---|---|
Methanol | 33.5 | 99.6 | 33.4 |
Acetone | 16.2 | 92.2 | 14.9 |
Acetonitrile | 12.3 | 96.2 | 11.8 |
Ethanol | 18.4 | 90.2 | 16.6 |
1,4-Dioxane | 1.2 | 54.6 | 0.7 |
1,2-Dichloroethane | 2.2 | 52.3 | 1.2 |
Ethyl acetate | 8.1 | 1.5 | 0.1 |
Fig.3 Effects of reaction temperature and time on the epoxidation of cyclohexene over Ti-Beta-1 Reaction conditions: cyclohexene, 30 mmol; methanol, 20 mL; Ti-Beta-1, 200 mg; H2O2, 10 mmol; reaction tempe-rature, 50—80 ℃; reaction time, 1—8 h.
Alkene | Conv.(%) | Sel.(%) | Yield(%) | ||||
---|---|---|---|---|---|---|---|
1-Hepetene | 21.9 | 99.9 | 21.9 | ||||
1-Octene | 15.3 | 99.9 | 15.3 | ||||
1-Decene | 12.6 | 99.8 | 12.6 | ||||
1-Dodecene | 10.3 | 99.8 | 10.3 |
Table 4 Epoxidation of different substrates over Ti-Beta-1 catalyst with H2O2 as oxidant*
Alkene | Conv.(%) | Sel.(%) | Yield(%) | ||||
---|---|---|---|---|---|---|---|
1-Hepetene | 21.9 | 99.9 | 21.9 | ||||
1-Octene | 15.3 | 99.9 | 15.3 | ||||
1-Decene | 12.6 | 99.8 | 12.6 | ||||
1-Dodecene | 10.3 | 99.8 | 10.3 |
Alkene | Conv.(%) | Sel.(%) | Yield(%) | ||||
---|---|---|---|---|---|---|---|
1-Decene | 27.6 | 95.3 | 26.3 | ||||
1-Dodecene | 25.9 | 93.8 | 24.3 | ||||
α-Pinene | 9.0 | 69.1 | 6.2 |
Table 5 Epoxidation of different substrates over Ti-Beta-1 catalyst with TBHP as oxidant*
Alkene | Conv.(%) | Sel.(%) | Yield(%) | ||||
---|---|---|---|---|---|---|---|
1-Decene | 27.6 | 95.3 | 26.3 | ||||
1-Dodecene | 25.9 | 93.8 | 24.3 | ||||
α-Pinene | 9.0 | 69.1 | 6.2 |
[1] | Jiao Y. L., Adedigba A. L., He Q., Miedziak P., Brett G., Dummer N. F., Predjon M., Liu J. M., Hutchings G. J., Catal. Sci. Technol.,2018, 8, 2211-2217 |
[2] | Kwon S., Schweitzer N. M., Park S., Stair P. C., Snurr R. Q., J. Catal.,2015, 326, 107-115 |
[3] | Ji X. Y., Xu L., Du X., Lu X. Q., Lu W. P., Sun J. L., Wu P., Catal. Sci. Technol.,2017, 7, 2874-2885 |
[4] | Mikolajska E., Calvino-Casilda V., Bañares M. A., Appl. Catal. A,2012, 421, 164-171 |
[5] | Huo S. Q., Wang J., Yang S., Wang J. P., Zhang B., Chen X., Tang Y. S., Polymer Degradation and Stability,2016, 131, 106-113 |
[6] | Solati Z., Hashemi M., Ebrahimi L., Catal. Lett.,2011, 141, 163-167 |
[7] | Li K., Zhou D., Deng J. J., Lu X. H., Xia Q. H., J. Mol. Catal. A: Chem.,2014, 387, 31-37 |
[8] | Zhou D., Zhang T. J., Xia Q. H., Zhao Y. R., Lv K. X., Lu X. H., Nie R. F., Chem. Sci.,2016, 7, 4966-4972 |
[9] | Wang L., Sun J., Meng X.J., Zhang W. P., Zhang J., Pan S. X., Shen Z., Xiao F. S., Chem. Commun., 2014, 50, 2012—2014 |
[10] | Zhao Y. R., Zhou D., Zhang T. J., Yang Y., Zhan K., Liu X. C., Min H., Lu X. H., Nie R. F., Xia Q. H., ACS Appl. Mater.Interface,2018, 10, 6390-6397 |
[11] | Wu P., Kubota Y., Yokoi T., ACS Catal.,2014, 4, 23-30 |
[12] | Tang B., Lu X. H., Zhou D., Lei J., Niu Z. H., Fan J., Xia Q. H., Catal. Commun.,2012, 21, 68-71 |
[13] | Wei X. L., Lu X. H., Zhang T. J., Chu X., Zhou D., Nie R. F., Xia Q. H., Micropor. Mesopor. Mater.,2015, 214, 80-87 |
[14] | Zhou D., Tang B., Lu X. H., Wei X. L., Li K., Xia Q. H., Catal. Commun.,2014, 45, 124-128 |
[15] | Wu P., Tatsumi T., Komatsu T., Yashima T., J. Catal.,2001, 202, 245-255 |
[16] | Bellussi G., Carati A., Clerici M. G., Maddinelli G., Millini R., J. Catal.,1992, 133, 220-230 |
[17] | Clerici M. G., Ingallina P., J.Catal.,1993, 140, 71-83 |
[18] | Wang Z., Yu J. H., Xu R. R., Chem. Soc. Rev.,2012, 41, 1729-1741 |
[19] | Xia K., Wang Y., Zhou D., Huang Z., Wu Z. H., Xia Q. H., Chem. J. Chinese Universities,2018, 39(5), 941-948 |
(夏坤,王艺,周丹,黄哲,伍仲汉,夏清华.高等学校化学学报, 2018, 39(5), 941-948) | |
[20] | Liu R., Zha F., Yang A. M., Chang Y., Chem. J. Chinese Universities., 2016, 37(5), 964-971 |
( 刘蓉,查飞,杨爱梅,常玥.高等学校化学学报, 2016, 37(5), 964-971) | |
[21] | Chu X., Zhou D., Li D., Xia K., Gan N., Lu X. H., Nie R. F., Xia Q. H., Zhang R. D., Micropor. Mesopor. Mater.,2016, 230, 166-176 |
[22] | Li Y., Yu J. H., Chem. Rev.,2014, 114, 7268-7316 |
[23] | Xu L., Huang D. D., Li C. G., Ji X. Y., Jin S. Q., Feng Z. C., Xia F., Li X. H., Fan F. T., Li C., Wu P., Chem. Commun.,2015, 51, 9010-9013 |
[24] | Yoshioka M., Yokoi T., Tatsumi T., Micropor. Mesopor. Mater.,2014, 200, 11-18 |
[25] | Zhou D., Lu X. H., Xu J., Yu A. A., Li J. Y., Deng F., Xia Q. H., Chem. Mater.,2012, 24, 4160-4165 |
[26] | Xi D. Y., Sun Q. M., Chen X. X., Wang N., Yu J. H., Chem. Commun.,2015, 51, 11987-11989 |
[27] | Zhou D., Chu X., Xu J., Zhang T. J., Lu X. H., Deng F., Wang S. F., Xia Q. H., Micropor. Mesopor. Mater.,2016, 220, 225-230 |
[28] | Maity U., Basu J. K., Sengupta S., Fuel,2013, 113, 180-186 |
[29] | Wu P., Tatsumi T., J.Catal.,2003, 214, 317-326 |
[1] | LIU Xiaolei, LU Yongqiang, YOU Qi, LIU Guohui, YAO Wei, HU Riming, YAN Jixian, CUI Yu, YANG Xiaofeng, SUN Guoxin, JIANG Xuchuan. A 3-Hydroxythalidomide-based Ratiometric Fluorescent Probe for the Detection of H2O2 [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220070. |
[2] | SUN Xingyu, LUO Jing, WANG Xiadi, ZHU Qing, ZHOU Hui, LYU Xiaobing. Synthesis and Characterization of Stereoregular and Discrete Oligo(cyclohexene carbonate)s [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220204. |
[3] | ZHANG Xu, QUE Jiaqian, HOU Yuexin, LYU Jiamin, LIU Zhan, LEI Kunhao, YU Shen, LI Xiaoyun, CHEN Lihua, SU Baolian. Hierarchical Mesoporous-microporous TS-1 Single Crystal Catalysts for Epoxidation of Allyl Chloride [J]. Chem. J. Chinese Universities, 2021, 42(8): 2529. |
[4] | XU Mengyi, HUANG Xuewen, LI Xiaojie, WEI Wei, LIU Xiaoya. Fabrication of Biosensor Based on “Beads-on-a-String” Shaped Composite Nano-assembly Modified Screen Printed Electrode [J]. Chem. J. Chinese Universities, 2021, 42(6): 1768. |
[5] | XIE Xingyu, ZHAO Yaxiang, ZHAO Lizhi, LI Rishun, WU Dihao, YE Hui, XIN Qingping, LI Hong, ZHANG Yuzhong. Colorimetric Detection Method for H2O2 Based on Two-dimensional Metal-organic Frameworks of Metalloporphyrin [J]. Chem. J. Chinese Universities, 2020, 41(8): 1776. |
[6] | WANG Ruixue, YIN Dongmei, SONG Yongxin, SHAN Guiye. Preparation of CuS/Ag2S Nanocomposite and the Peroxidase-like Properties [J]. Chem. J. Chinese Universities, 2020, 41(6): 1218. |
[7] | LI Dan, WU Zhonghan, ZHOU Dan, JIANG Ding, LU Xinhuan, XIA Qinghua. Controllable Synthesis and Catalytic Applications of Hydrophobic Hybrid Zeolites† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1359. |
[8] |
CHEN Yan,DONG Xuejiao,SHAN Guiye.
Preparation of Liposome@Ag/Au Nanocomposites and Their Interaction with H2 |
[9] |
LU Xinhuan,TAO Peipei,HUANG Fengfeng,ZHANG Xianggui,LIN Zhicheng,PAN Haijun,ZHANG Haifu,ZHOU Dan,XIA Qinghua.
Nano-SnO2 as Highly Efficient Catalyst for Epoxidation of Cyclic Olefins with Aqueous H2 |
[10] | WANG Hui, PEI Yanbo, HU Shaozheng, MA Wentao, SHI Shuoyu. Synthesis and “Two Channel Pathway” Photocatalytic H2O2 Production Ability of Band Gap Tunable K+ Doped Graphitic Carbon Nitride† [J]. Chem. J. Chinese Universities, 2018, 39(7): 1503. |
[11] | CAI Zhuang,WANG Guiling,SONG Congying,YANG Xueying,HU Rong,YE Ke,ZHU Kai,CHENG Kui,YAN Jun,CAO Dianxue. Preparation of a Binder Free Electrode of NiAg Supported on Graphite Modified A4 Paper and Its Electrochemical Performance for H2O2 Reduction† [J]. Chem. J. Chinese Universities, 2018, 39(5): 1041. |
[12] | XIA Kun,WANG Yi,ZHOU Dan,HUANG Zhe,WU Zhonghan,XIA Qinghua. Rapid Synthesis of CoSAPO-5 Zeolite and Efficiently Catalytic Epoxidation of α-Pinene with Air† [J]. Chem. J. Chinese Universities, 2018, 39(5): 941. |
[13] | WEI Yana, ZHANG Xincun, LI Hui, XU Qian, YUE Fan, WANG Jide. Relationship Between Reversible Oxygenation and Catalytic Properties of Amino Acid Cobalt Complexes† [J]. Chem. J. Chinese Universities, 2016, 37(2): 354. |
[14] | SUN Haijie, CHEN Lingxia, HUANG Zhenxu, LIU Shouchang, LIU Zhongyi. Particle Size Effect of Ru-Zn Catalysts on Selective Hydrogenation of Benzene to Cyclohexene† [J]. Chem. J. Chinese Universities, 2015, 36(10): 1969. |
[15] | AN Wen-Jia, XU Lin*. Highly Selective Oxidation of Cyclohexene via Trivacant Keggin-type Phosphotungstate as Catalysts [J]. Chem. J. Chinese Universities, 2011, 32(3): 783. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||