高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (7): 20230174.doi: 10.7503/cjcu20230174
• 综合评述 • 上一篇
文敏1, 李豪杰1, 李俊梁1, 刘思奇2(), 胡笑添1(
), 陈义旺1,2(
)
收稿日期:
2023-04-04
出版日期:
2023-07-10
发布日期:
2023-05-23
通讯作者:
刘思奇,胡笑添,陈义旺
E-mail:siqiliu@jxnu.edu.cn;happyhu@ncu.edu.cn;ywchen@ncu.edu.cn
基金资助:
WEN Min1, LI Haojie1, LI Junliang1, LIU Siqi2(), HU Xiaotian1(
), CHEN Yiwang1,2(
)
Received:
2023-04-04
Online:
2023-07-10
Published:
2023-05-23
Contact:
LIU Siqi, HU Xiaotian, CHEN Yiwang
E-mail:siqiliu@jxnu.edu.cn;happyhu@ncu.edu.cn;ywchen@ncu.edu.cn
Supported by:
摘要:
有机太阳电池(OSCs)由于具有质量轻、 柔韧性好及可大面积生产等优点, 已成为太阳电池领域的研究热点. 目前, 单结OSCs的光电转化效率已突破19%. 深入研究活性层薄膜的成膜动力学和热力学对提升有机太阳电池光学性能具有重要意义. 同时, 开发大面积印刷制备技术有利于推动有机太阳电池的商业化发展. 本文总结了基于准平面异质结(PPHJ)结构的OSCs中的代表性成果, 重点介绍了准平面异质结结构有机光伏器件中界面工程调控、 制备工艺优化等方面的研究进展, 并对未来高性能大面积有机太阳电池的发展进行了展望.
中图分类号:
TrendMD:
文敏, 李豪杰, 李俊梁, 刘思奇, 胡笑添, 陈义旺. 准平面有机光伏器件的研究进展. 高等学校化学学报, 2023, 44(7): 20230174.
WEN Min, LI Haojie, LI Junliang, LIU Siqi, HU Xiaotian, CHEN Yiwang. Advances in Pseudo-planar Heterojunction Organic Photovoltaic Devices. Chem. J. Chinese Universities, 2023, 44(7): 20230174.
Fig.1 Diagrams of normal device structure of OSCs and the common active layer configurations(A), common green solvents(B) and diagram of blade⁃coating(C)
Fig.2 Chronology of the key developments of OSCs based on the PPHJ structure(A) Ref.[29], Copyright 2017, Wiley⁃VCH; (B) Ref.[15], Copyright 2018, Wiley⁃VCH; (C) reprinted with permission from Ref.[22], Copyright 2021, Wiley⁃VCH; (D) reprinted with permission from Ref.[38], Copyright 2023, Wiley⁃VCH; (E) Ref.[26], Copyright 2018, Wiley⁃VCH; (F) Ref.[36], Copyright 2018, the Royal Society of Chemistry; (G) reprinted with permission from Ref.[37], Copyright 2019, Elsevier; (H) reprinted with permission from Ref.[13], Copyright 2022, Wiley⁃VCH.
Year | Material | Solvent | Fabrication method | VOC/V | JSC/(mA∙cm-2) | FF(%) | PCE(%) | Ref. |
---|---|---|---|---|---|---|---|---|
2023 | D18⁃Cl∶BTP⁃eC9/PM6∶L8⁃BO | Hot CF/CF | Spin⁃coating | 0.898 | 27.02 | 80.81 | 19.61 | [ |
2023 | PM6(P⁃Cl)/BTP⁃eC9 | CB/CF | Spin⁃coating | 0.853 | 27.04 | 80.50 | 19.10 | [ |
2022 | Y6/D18 | CF/CF | Blade⁃coating | 0.850 | 26.79 | 74.69 | 17.10 | [ |
2022 | PM6/PY⁃DT | MB/MB(CB) | Spin⁃coating | 0.964 | 23.60 | 72.50 | 16.50 | [ |
2022 | PM6/Y6∶TF1 | CB/CF(CN) | Spin⁃coating | 0.870 | 25.89 | 75.08 | 16.91 | [ |
2022 | PM6/Y6 | CB/CF(CN) | NIL⁃SD | 0.857 | 26.50 | 76.40 | 17.36 | [ |
2022 | PM6/ICBA∶Y6 | CF/CF(CN) | Blade⁃coating | 0.860 | 22.75 | 74.67 | 14.62 | [ |
2021 | PM6/F8IC∶IT⁃4F | CF/CF(DIO) | Spin⁃coating | 0.789 | 25.00 | 72.10 | 14.20 | [ |
PM6/F8IC∶Y6 | 0.768 | 25.90 | 71.50 | |||||
2021 | PM6/BTP⁃eC9 | o⁃XY/o⁃XY(DIO) | Spin⁃coating | 0.840 | 26.65 | 78.10 | 17.48 | [ |
Blade⁃coating | 0.836 | 26.26 | 76.40 | 16.77 | ||||
2021 | PM6/BO⁃4Cl∶BTP⁃S2 | CF/CF | Spin⁃coating | 0.861 | 27.14 | 78.04 | 18.16 | [ |
2021 | D18/BTIC⁃BO⁃4Cl | CF/TL(DIO) | Spin⁃coating | 0.860 | 26.32 | 77.66 | 17.60 | [ |
2021 | PNTB6⁃Cl/N3 | CB/CF(DIO) | Spin⁃coating | 0.86 | 26.58 | 77.30 | 17.59 | [ |
2021 | PBDB⁃T/PYT | CF/CF(CN) | Spin⁃coating | 0.891 | 23.13 | 73.98 | 15.17 | [ |
2021 | PM6/Y6 | CF(DDO)/CF(CN) | Spin⁃coating | 0.850 | 25.51 | 77.45 | 16.93 | [ |
2021 | PM6/IT⁃4F | CB/CB(DIO) | Spin⁃coating | 0.860 | 20.98 | 75.90 | 13.70 | [ |
2021 | PBDB⁃T⁃2F/ITIC⁃Th1 | CB(ODT)/DCM | Spin⁃coating | 0.940 | 16.90 | 69.00 | 11.00 | [ |
2020 | PM6/Y6⁃BO | CF/CF(CN) | Spin⁃coating | 0.85 | 26.20 | 77.50 | 17.20 | [ |
2020 | PT2/Y6 | CB/CF(DIO) | Spin⁃coating | 0.830 | 26.70 | 74.40 | 16.50 | [ |
2020 | PM6/Y6 | CF/CF | Blade⁃coating | 0.834 | 25.90 | 75.68 | 16.35 | [ |
2020 | PM6/Y6∶ICBA | CB/THF(CB) | Blade⁃coating | 0.880 | 21.25 | 76.55 | 14.25 | [ |
2020 | FOIC∶N2200/PTB7⁃Th | CB/CB | Blade⁃coating | 0.720 | 24.17 | 68.60 | 12.27 | [ |
2020 | PffBT4T⁃2OD/IEICO⁃4F∶FBR | o⁃XY | Spin⁃coating | 0.74 | 22.40 | 68.30 | 11.30 | [ |
2020 | PTB7⁃Th/IEICO⁃4F | o⁃XY/o⁃XY(n⁃butanol) | Spin⁃coating | 0.660 | 20.00 | 62.60 | 8.30 | [ |
Table 1 Photovoltaic parameters of OSCs based on the PPHJ structure under simulated solar illumination(AM 1.5G, 100 mW/cm2)
Year | Material | Solvent | Fabrication method | VOC/V | JSC/(mA∙cm-2) | FF(%) | PCE(%) | Ref. |
---|---|---|---|---|---|---|---|---|
2023 | D18⁃Cl∶BTP⁃eC9/PM6∶L8⁃BO | Hot CF/CF | Spin⁃coating | 0.898 | 27.02 | 80.81 | 19.61 | [ |
2023 | PM6(P⁃Cl)/BTP⁃eC9 | CB/CF | Spin⁃coating | 0.853 | 27.04 | 80.50 | 19.10 | [ |
2022 | Y6/D18 | CF/CF | Blade⁃coating | 0.850 | 26.79 | 74.69 | 17.10 | [ |
2022 | PM6/PY⁃DT | MB/MB(CB) | Spin⁃coating | 0.964 | 23.60 | 72.50 | 16.50 | [ |
2022 | PM6/Y6∶TF1 | CB/CF(CN) | Spin⁃coating | 0.870 | 25.89 | 75.08 | 16.91 | [ |
2022 | PM6/Y6 | CB/CF(CN) | NIL⁃SD | 0.857 | 26.50 | 76.40 | 17.36 | [ |
2022 | PM6/ICBA∶Y6 | CF/CF(CN) | Blade⁃coating | 0.860 | 22.75 | 74.67 | 14.62 | [ |
2021 | PM6/F8IC∶IT⁃4F | CF/CF(DIO) | Spin⁃coating | 0.789 | 25.00 | 72.10 | 14.20 | [ |
PM6/F8IC∶Y6 | 0.768 | 25.90 | 71.50 | |||||
2021 | PM6/BTP⁃eC9 | o⁃XY/o⁃XY(DIO) | Spin⁃coating | 0.840 | 26.65 | 78.10 | 17.48 | [ |
Blade⁃coating | 0.836 | 26.26 | 76.40 | 16.77 | ||||
2021 | PM6/BO⁃4Cl∶BTP⁃S2 | CF/CF | Spin⁃coating | 0.861 | 27.14 | 78.04 | 18.16 | [ |
2021 | D18/BTIC⁃BO⁃4Cl | CF/TL(DIO) | Spin⁃coating | 0.860 | 26.32 | 77.66 | 17.60 | [ |
2021 | PNTB6⁃Cl/N3 | CB/CF(DIO) | Spin⁃coating | 0.86 | 26.58 | 77.30 | 17.59 | [ |
2021 | PBDB⁃T/PYT | CF/CF(CN) | Spin⁃coating | 0.891 | 23.13 | 73.98 | 15.17 | [ |
2021 | PM6/Y6 | CF(DDO)/CF(CN) | Spin⁃coating | 0.850 | 25.51 | 77.45 | 16.93 | [ |
2021 | PM6/IT⁃4F | CB/CB(DIO) | Spin⁃coating | 0.860 | 20.98 | 75.90 | 13.70 | [ |
2021 | PBDB⁃T⁃2F/ITIC⁃Th1 | CB(ODT)/DCM | Spin⁃coating | 0.940 | 16.90 | 69.00 | 11.00 | [ |
2020 | PM6/Y6⁃BO | CF/CF(CN) | Spin⁃coating | 0.85 | 26.20 | 77.50 | 17.20 | [ |
2020 | PT2/Y6 | CB/CF(DIO) | Spin⁃coating | 0.830 | 26.70 | 74.40 | 16.50 | [ |
2020 | PM6/Y6 | CF/CF | Blade⁃coating | 0.834 | 25.90 | 75.68 | 16.35 | [ |
2020 | PM6/Y6∶ICBA | CB/THF(CB) | Blade⁃coating | 0.880 | 21.25 | 76.55 | 14.25 | [ |
2020 | FOIC∶N2200/PTB7⁃Th | CB/CB | Blade⁃coating | 0.720 | 24.17 | 68.60 | 12.27 | [ |
2020 | PffBT4T⁃2OD/IEICO⁃4F∶FBR | o⁃XY | Spin⁃coating | 0.74 | 22.40 | 68.30 | 11.30 | [ |
2020 | PTB7⁃Th/IEICO⁃4F | o⁃XY/o⁃XY(n⁃butanol) | Spin⁃coating | 0.660 | 20.00 | 62.60 | 8.30 | [ |
Fig.3 Molecular energy level diagram(A), J⁃V characteristics(B), UV⁃Vis absorption spectra(C), TEM images(D) of PPHJ and BHJ co⁃blended films[20], dynamic X⁃ray photoelectron spectroscopy(DXPS) spectra and morphological evolution of thin films(E), 2D GIWAXS characterizations(F), GIWAXS line profiles(G)[19](A—D) Copyright 2022, the Royal Society of Chemistry); (E—G) Copyright 2022, Elsevier.
Fig.4 Categorization of additives according to solubility and volatility(A)[51], J⁃V characteristics(B), GIWAXS line profiles(C), schematic diagrams of film morphology in the BHJ and PPHJ active layers with or without DIO treatment(D)[21], schematic outline of BHJ and LBL device processing procedures(E), J⁃V characteristics(F)[24](A) Copyright 2015, Wiley⁃VCH;(B—D) Copyright 2021, Wiley⁃VCH; (E, F) Copyright 2021, Wiley⁃VCH.
Fig.5 AFM height images(A—C), phase images(D—F) and TEM images(G—I) of PM6∶F8IC, PM6∶F8IC∶IT⁃4F and PM6∶F8IC∶Y6 blend films[28], diagram of blade⁃coating(J), energy level alignments of PM6, ICBA, and IT⁃4F(K), normalized efficiency versus annealing time at 150 ℃(L), J⁃V characteristics and EQE spectra of the BHJ and PPHJ PM6∶ICBA∶IT⁃4F active layer OSCs(M)[27], diagram of BHJ⁃type and LbL⁃type device structures(N), J⁃V curves of the optimal BHJ⁃type and LbL⁃type ternary OPVs(O), PCE and FF variations with the change of BTP⁃S2 ratio(P)[25](A—I) Copyright 2022, Elsevier; (J—M) Copyright 2020, Wiley⁃VCH; (N—P) Copyright 2021, Wiley⁃VCH.
Fig.6 AFM height images(A—D), J⁃V characteristics(E, F), XRD patterns of pure donor film, bilayer film, and blend films(G)[15]Copyright 2019, Wiley⁃VCH.
Fig.7 Schematic illustration of spin⁃coating and blade⁃coating(A)[63], process flow diagram of the LbL⁃based process for large⁃area solar modules(B), visual illustrations of the morphological characteristics and possible physical dynamics of BHJ and LbL blend⁃based devices(C)[37](A) Copyright 2019, the Royal Society of Chemistry); (B, C) Copyright 2019, Elsevier.
1 | Kannan N., Vakeesan D., Renewable and Sustainable Energy Reviews, 2016, 62, 1092—1105 |
2 | Yuan J., Liu D. J., Zhao H., Lin B. J., Zhou X. B., Naveed H. B., Zhao C., Zhou K., Tang Z., Chen F., Ma W., Adv. Energy Mater., 2021, 11(18), 2100098 |
3 | Roesch R., Faber T., Hauff E. V., Brown T. M., Lira⁃Cantu M., Hoppe H., Adv. Energy Mater., 2015, 5(20), 1501407 |
4 | Zhou Z. C., Xu S. J., Song J. N., Jin Y. Z., Yue Q. H., Qian Y. H., Liu F., Zhang F. L., Zhu X. Z., Nat. Energy, 2018, 3(11), 952—959 |
5 | Somasundaram S., Jeon S., Park S., Macromolecular Research, 2016, 24, 226—234 |
6 | Li C., Zhou J. D., Song J. L., Xu J. Q., Zhang H. T., Zhang X. N., Guo J., Zhu L., Wei D. H., Han G. C., Min J., Zhang Y., Xie Z. Q., Yi Y.P., Yan H., Gao F., Liu F., Sun Y. M., Nat. Energy, 2021, 6(6), 605—613 |
7 | Zhang J. Q., Tan H. S., Guo X. G., Facchetti A., Yan H., Nat. Energy, 2018, 3(9), 720—731 |
8 | Chen T. Y., Li S. X., Li Y. K., Chen Z., Wu H. T., Lin Y., Gao Y., Wang M. T., Ding G. Y., Min J., Ma Z. F., Zhu H. M., Zuo L. J., Chen H. Z., Adv. Mater., 2023, 35(21), 2300400 |
9 | Li H. J., Liu S. Q., Wu X. T., Qi Q. C., Zhang H. Y., Meng X. C., Hu X. T., Ye L., Chen Y. W., Energy Environ. Sci., 2022, 15(5), 2130—2138 |
10 | Li S. X., Zhan L. L., Sun C. K., Zhu H. M., Zhou G. Q., Yang W. T., Shi M. M., Li C. Z., Hou J. H., Li Y. F., Chen H. Z., J. Am. Chem. Soc., 2019, 141(7), 3073—3082 |
11 | Shaheen S. E., Brabec C. J., Sariciftci N. S., Appl. Phys. Lett., 2001, 78(6), 841—843 |
12 | Zhao H., Xue J. W., Wu H. B., Lin B. J., Cai Y. H., Zhou K., Yun D. Q., Tang Z., Ma W., Adv. Funct. Mater., 2023, 33(5), 2210534 |
13 | Wang Y. L., Xue J. W., Zhong H. Y., Everett C. R., Jiang X. Y., Reus M. A., Chumakov A., Roth S. V., Adedeji M. A., Jili N., Zhou K., Lu G. H., Tang Z., Mola G. T., Müller⁃Buschbaum P., Ma W., Adv. Energy Mater., 2023, 13(7), 2203496 |
14 | Wang Y. L., Zhu Q. L., Naveed H. B., Zhao H., Zhou K., Ma W., Adv. Energy Mater., 2020, 10(7), 1903609 |
15 | Dong S., Zhang K., Xie B. M., Xiao J. Y., Yip H. L., Yan H., Huang F., Cao Y., Adv. Energy Mater., 2019, 9(1), 1802832 |
16 | Jee M. H., Ryu H. S., Lee D., Lee W., Woo H. Y., Adv. Sci., 2022, 9(25), 2201876 |
17 | Mao H. D., Zhang L. F., Wen L., Huang L. Q., Tan L. C., Chen Y. W., Adv. Funct. Mater., 2023, 33(1), 2209152 |
18 | Cui Y., Zhang S. Q., Liang N. N., Kong J. Y., Yang C. Y., Yao H. F., Ma L. J., Hou J. H., Adv. Mater., 2018, 30(34), 1802499 |
19 | Liao X. F., Xie Q., Guo Y. X., He Q. N., Chen Z, Yu N., Zhu P. P., Cui Y. J., Ma Z. F., Xu X. B., Zhu H. M., Chen Y. W., Energy Environ. Sci., 2022, 15(1), 384—394 |
20 | Wang L., Hu M., Zhang Y. D., Yuan Z.Y., Hu Y., Zhao X. H., Chen Y. W., Polymer, 2022, 255, 125114 |
21 | He Q. N., Sheng W. P., Zhang M., Xu G. D., Zhu P. P., Zhang H. T., Yao Z. Y., Gao F., Liu F., Liao X. F., Chen Y. W., Adv. Energy Mater., 2021, 11(7), 2003390 |
22 | Wang X. K., Zhang L. F. Hu L., Xie Z. J., Mao H. D., Tan L. C., Zhang Y. D., Chen Y. W., Adv. Funct. Mater., 2021, 31(33), 2102291 |
23 | Weng K. K., Ye L. L., Zhu L., Xu J. Q., Zhou J. J., Feng X., Lu G. H., Tan S. T., Liu F., Sun Y. M., Nat. Commun., 2020, 11(1), 2855 |
24 | Wu Q., Wang W., Wu Y., Chen Z., Guo J., Sun R., Guo J., Yang Y., Min J., Adv. Funct. Mater., 2021, 31(15), 2010411 |
25 | Zhan L. L., Li S. X., Xia X. X., Li Y. K., Lu X. H., Zuo L. J., Shi M. M., Chen H. Z., Adv. Mater., 2021, 33(12), 2007231 |
26 | Cheng P., Wang R., Zhu J. S., Huang W. C., Chang S., Meng L., Sun P.Y., Cheng H., Qin M., Zhu C. H., Zhan X. W., Yang Y., Adv. Mater., 2018, 30(8), 1705243 |
27 | Liu S. Q., Chen D., Hu X. T., Xing Z., Wan J., Zhang L., Tan L. C., Zhou W. H., Chen Y. W., Adv. Funct. Mater., 2020, 30(36), 2003223 |
28 | Wan, J., Chen, Z., Zeng, L., Liao, X. F., He, Q. N., Liu, S. Q., Zhu, P. P., Zhu, H. M., Chen, Y. W., J. Energy Chem., 2022, 65, 133—140 |
29 | Ghasemi M., Ye L., Zhang Q. Q., Yan L., Kim J., Awartani O., You W., Gadisa A., Ade H., Adv. Mater., 2017, 29(4), 1604603 |
30 | Cui Y., Zhang S. Q., Liang N. N., Kong J. Y., Yang C. Y., Yao H. F., Ma L. J., Hou J. H., Adv. Mater., 2018, 30(34), 1802499 |
31 | Kearns D., Calvin M., J. Chem. Phys., 1958, 29(4), 950—951 |
32 | Tang C. W., Phys. Lett., 1986, 48(2), 183—185 |
33 | Cui Y., Xu Y., Yao H. F., Bi P. Q., Hong L., Zhang J. Q., Zu Y. F., Zhang T., Qin J. Z., Ren J. Z., Chen Z. H., He C., Hao X. T., Wei Z. X., Hou J. H., Adv. Mater., 2021, 33(41), 2102420 |
34 | Zhan L. L., Li S. X., Li Y. K., Sun R., Min J., Bi Z. Z., Ma W., Chen Z., Zhou G. Q., Zhu H. M., Shi M. M., Zuo L. J., Chen H. Z., Joule, 2022, 6(3), 662—675 |
35 | Zhu L., Zhang M., Xu J. Q., Li C., Yan J., Zhou G. Q., Zhong W. K., Hao T. Y., Song J. L., Xue X. N., Zhou Z. C., Zeng R., Zhu H. M., Chen C., MacKenzie R. C. I., Zou Y. C., Nelson J., Zhang Y. M., Sun Y. M., Liu F., Nat. Mater., 2022, 21(6), 656—663 |
36 | Zhang J. B., Kan B., Pearson A. J., Parnell A. J., Cooper J. F. K., Liu X., Conaghan P. J., Hopper T. R., Wu Y. T., Wan X. J., Gao F., Greenham N. C., Bakulin A. A., Chen Y. S., Friend R. H., J. Mater., 2018, 6(37), 18225—18233 |
37 | Sun R., Wu Q., Guo J., Wang T., Wu Y., Qiu B. B., Luo Z. H., Yang W. Y., Hu Z. C., Guo J., Shi M. M., Yang C. L., Huang F., Li Y. F., Min J., Joule, 2020, 4(2), 407—419 |
38 | Xu X. P., Jing W. W., Meng H. F., Guo Y. Y., Yu L. Y., Li R. P., Peng Q., Adv. Mater., 2023, 35(12), 2208997 |
39 | Zhou M. G., Liao C. T., Duan Y. W., Xu X. P., Yu L. Y., Li R. P., Peng Q., Adv. Mater., 2023, 35(6), 2208279 |
40 | Zhao C. Y., Ma R. J., Oh J., Wang L. H., Zhang G. P., Wang Y. J., He S. Y., Zhu L. X., Yang C., Zhang G. Y., Li G., J. Mater. Chem. C, 2022, 10(47), 17899—17906 |
41 | Liu S. Q., Li H. J., Wu X. T., Chen D., Zhang L., Meng X. C., Tan L. C., Hu X. T., Chen Y. W., Adv. Mater., 2022, 34(23), 2201604 |
42 | Zhang Y., Liu K., Huang J. M., Xia X. X., Cao J. P., Zhao G. M., Fong P. W. K., Zhu Y., Yan F., Yang Y., Lu X. H., Li G., Nat. Commun., 2021, 12(1), 4815 |
43 | Chen H., Zhao T. X., Li L., Tan P., Lai H. J., Zhu Y. L., Lai X., Han L., Zheng N., Guo L., He F., Adv. Mater., 2021, 33(37), 2102778 |
44 | Ning H. J., Jiang Q. J., Han P. W., Lin M., Zhang G. Y., Chen J. M., Chen H., Zeng S. Y., Gao J.P., Liu J. G., He F.,Wu Q. H., Energy Environ. Sci., 2021, 14, 5919—5928 |
45 | Park S. Y., Chandrabose S., Price M. B., Ryu H. S., Lee T. H., Shin Y. S., Wu Z., Lee W., Chen K., Dai S. X., Zhu J. S., Xue P. Y., Zhan X. W., Woo H. Y., Kim J. Y., Hodgkiss J. M., Nano Energy, 2021, 84, 105924 |
46 | Fu H., Gao W., Li Y. X., Lin F., Wu X., Son J. H., Luo J. D., Woo H. Y., Zhu Z. L., Jen A. K. Y. Small Methods, 2020, 4(12), 2000687 |
47 | Ren M. R., Zhang G. C., Chen Z., Xiao J. Y., Jiao X. C., Zou Y. P., Yip H., Cao Y., ACS Appl. Mater. Interfaces, 2020, 12, 13077—13086 |
48 | Song Y., Zhang K., Dong S., Xia R. X., Huang F., Cao Y., ACS Appl. Mater. Interfaces, 2020, 12(16), 18473—18481 |
49 | Chen H., Hou J. H., Zhang S. Q., Liang Y. Y., Yang G. W., Yang Y., Yu L. P., Wu Y., Li G., Nat. Photonics, 2009, 3(11), 649—653 |
50 | Cai C. S., Wan J., Zhang Y. D., Yuan Z. Y., Huang Q. F., Xu G. D., Hu Y., Zhao X. H., Chen Y. W., J. Polym. Sci., 2018, 56(1), 116—124 |
51 | Machui F., Maisch P., Burgués⁃Ceballos I., Langner S., Krantz J., Ameri T., Brabec C. J., ChemPhysChem., 2015, 16(6), 1275—1280 |
52 | Li Q. D., Wang L., Liu S. J., Guo L. Z., Dong S., Ma G., Cao Z. X., Zhan X. Z., Gu X. D., Zhu T., Cai Y., Huang F., ACS Energy Lett., 2020, 5(11), 3637—3646 |
53 | Min S., Han S. H., Park C., Ryu K. Y., Kim K., Sol. RRL, 2021, 5(10), 2100592 |
54 | Zhang Y., Wu B. Q, He Y. K., Deng W. Y., Li J. W., Li J. Y., Qiao N., Xing Y. F., Yuan X. Y., Li N., Brabec C. J., Wu H. B., Lu G. H., Duan C. H., Huang F., Cao Y., Nano Energy, 2022, 93, 106858 |
55 | Xu X. P., Yu L.Y., Meng H. F., Dai L., Yan H., Li R., Peng Q., Adv. Funct. Mater., 2022, 32(4), 2108797 |
56 | Jia T., Zhang J. B., Zhong W. K., Liang Y. Y., Zhang K., Dong S., Ying L., Liu F., Wang X. H., Huang F., Cao Y., Nano Energy, 2020, 72, 104718 |
57 | Jhuo H., Liao S., Li Y., Yeh P., Chen S., Wu W., Su C., Lee J., Yamada N. L., Jeng U., Adv. Funct. Mater., 2016, 26(18), 3094—3104 |
58 | Ye L., Xiong Y., Chen Z., Zhang Q. Q., Fei Z. P., Henry R., Heeney M., O’Connor B. T., You W., Ade H., Adv. Mater., 2019, 31, 1808153 |
59 | Cho Y., Nguyen T. L., Oh H., Ryu K. Y., Woo H. Y., Kim K., ACS Appl. Mater. Interfaces, 2018, 10(33), 27757—27763 |
60 | Nam M., Na J., Shin J., Lee H. H., Chang R., Ko D., Nano Energy, 2020, 74, 104883 |
61 | Cheng H. W., Mohapatra A., Chang Y. M., Liao C. Y., Hsiao Y. T., Chen C. H., Lin Y. C., Huang S. Y., Chang B., Yang Y., Chu C. W., Wei K. H., ACS Appl. Mater. Interfaces, 2021, 13(23), 27227—27236 |
62 | Wang Y. L., Wang X. H., Lin B. J., Bi Z. Z., Zhou X. B., Naveed H. B., Zhou K., Yan H. P., Tang Z., Ma W., Adv. Energy Mater., 2020, 10(28), 2000826 |
63 | Sun R., Guo J., Sun C. K., Wang T., Luo Z. H., Zhang Z. H., Jiao X. C., Tang W. H., Yang C. L., Li Y. F., Min J., Energy Environ. Sci., 2019, 12, 384—395 |
[1] | 孙恒, 张鹏宇, 张英楠, 詹传郎. 非稠环小分子受体材料的研究进展[J]. 高等学校化学学报, 2023, 44(7): 20230076. |
[2] | 张妍, 蒋行健, 刘明, 郑植, 张勇. 基于分子性能与器件制备的低泛化误差有机太阳电池光电转化效率预测模型[J]. 高等学校化学学报, 2023, 44(7): 20230165. |
[3] | 赵明新, 姚志刚, 刘中原, 徐文婧, 马晓玲, 张福俊. 逐层沉积型有机太阳能电池的研究进展[J]. 高等学校化学学报, 2023, 44(7): 20230120. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||