高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (6): 1648.doi: 10.7503/cjcu20200863
岳胜利1,2, 武光宝3, 李星3, 李康2, 黄高胜2, 唐翌1(), 周惠琼2(
)
收稿日期:
2020-12-14
出版日期:
2021-06-10
发布日期:
2021-06-08
通讯作者:
周惠琼
E-mail:tangyii@163.com;zhouhq@nanoctr.cn
作者简介:
唐 翌, 男, 博士, 教授, 主要从事非线性物理、 低维量子体系中的动力学计算研究. E-mail: 基金资助:
YUE Shengli1,2, WU Guangbao3, LI Xing3, LI Kang2, HUANG Gaosheng2, TANG Yi1(), ZHOU Huiqiong2(
)
Received:
2020-12-14
Online:
2021-06-10
Published:
2021-06-08
Contact:
ZHOU Huiqiong
E-mail:tangyii@163.com;zhouhq@nanoctr.cn
摘要:
新型有机-无机杂化二维(2D)钙钛矿具有优良的光电性能、 结晶性和稳定性, 在太阳能电池领域引起广泛关注. 相比于三维(3D)钙钛矿, 由于有机间隔阳离子(OSC)的引入形成独特的层状晶体结构赋予了材料特殊性质: (1) 多层量子阱结构促成材料各项异性的光电性质; (2) 间隔阳离子改变前驱体团簇状态, 实现溶液中高质量的结晶; (3) 间隔层的疏水性质和抑制离子迁移作用, 从本源上改善了钙钛矿的稳定性. 近年来, 针对准2D钙钛矿太阳能电池(准2D-PSCs)展开了广泛研究, 并取得了一系列重要研究成果. 本文从准2D钙钛矿材料的晶体结构与取向、 相分布、 光电性质到器件的能量转化效率与稳定性等方面, 综合评述了近年来准 2D-PSCs的最新研究进展, 总结了晶体结构-材料性质-电池性能之间的作用机制, 并进一步展望了未来研究的趋势.
中图分类号:
TrendMD:
岳胜利, 武光宝, 李星, 李康, 黄高胜, 唐翌, 周惠琼. 准二维钙钛矿太阳能电池的研究进展. 高等学校化学学报, 2021, 42(6): 1648.
YUE Shengli, WU Guangbao, LI Xing, LI Kang, HUANG Gaosheng, TANG Yi, ZHOU Huiqiong. Research Progress of Quasi-two-dimensional Perovskite Solar Cells. Chem. J. Chinese Universities, 2021, 42(6): 1648.
Fig.1 Chemical formula of using organic spacer salt applied in quasi?2D?PSCs of Ruddlesden?Popper(RP)(A), Dion?Jacobson(DJ)(B) and alternating cations in the interlayer space(ACI) structure(C)
Fig.2 2D perovskites octahedron connectivity modes of corner?sharing[( 3AMP )PbI4](A), edge sharing[( mpz )2Pb3Br10](B) and face sharing[( tms )4Pb3Br10](C)[16]Copyright 2019, American Chemical Society.
Species | DJ | ACI | RP | AVI |
---|---|---|---|---|
Formula | A′An-1BnX3n+1 | (A′A)n-1BnX3n+1 | (A′A) n+1BnX3n+1 | Bi2O2An-1BnX3n+1 |
Stacking sequence | [(A′)(An-1BX)n] | [(A′X)(ABX)n] | [(A′X)(ABX)n] | [(Bi2O2)(An-1BX)n] |
A relative shift of the layers along the ab?plane | (0, 0) shift | (1/2, 0) shift | (1/2, 1/2) shift | (1/2, 1/2) shift |
n=3 exemplar | 3AMP(MA)2Pb3I11 | GA2MA3Pb3I11 | BA2(MA)2Pb3I11 | (Bi2O2)(Sr)Ta2O7 |
Table 1 Structure configurations of the three types of <100> 2D perovskites[28―30]
Species | DJ | ACI | RP | AVI |
---|---|---|---|---|
Formula | A′An-1BnX3n+1 | (A′A)n-1BnX3n+1 | (A′A) n+1BnX3n+1 | Bi2O2An-1BnX3n+1 |
Stacking sequence | [(A′)(An-1BX)n] | [(A′X)(ABX)n] | [(A′X)(ABX)n] | [(Bi2O2)(An-1BX)n] |
A relative shift of the layers along the ab?plane | (0, 0) shift | (1/2, 0) shift | (1/2, 1/2) shift | (1/2, 1/2) shift |
n=3 exemplar | 3AMP(MA)2Pb3I11 | GA2MA3Pb3I11 | BA2(MA)2Pb3I11 | (Bi2O2)(Sr)Ta2O7 |
Fig.4 Schematic diagram of the three structure types of 2D perovskite in the (100)?orientation of RP structure(A), DJ structure(B)[29] and ACI structure(C)[34](A, B) Copyright 2018, American Chemical Society; (C) Copyright 2019, American Chemical Society.
Fig.5 GIWAXS patterns of NH4Cl additive affecting the crystallization and orientation of BA?base RP film(n=4) of precursor solution without NH4Cl additive(A) and with NH4Cl additive(B)[40]Copyright 2020, Springer Nature.
Fig.6 Schematic diagram of 2D perovskites phase?distributions of uniform phase distribution(A), sequential phase distribution(B) and pure phase distribution(C)[51]Copyright 2019, Elsevier.
Fig.9 Summary of degree of vertical orientation with different organic spacers, remove solution rates and solvents of iso?BAI perovskites film(A) and nBAI perovskites film(C), GIWAXS patterns of quasi?2D perovskites films based on iso?BAI based?perovskites film(B) and nBAI based?perovskites film(D)[46]Copyright 2019, American Chemical Society.
Fig.10 Like?3D phase effect nucleation and growth of RP crystals from precursor solution without(A) and with additive(B), comparison of solubility of BAI, MAI, PbI2 in DMF solvent(C)[40]The inset of (C) scale bar is 10 μm. Copyright 2020, Springer Nature.
Fig.11 Schematic diagram of a drop?casting(A) and batch slot?die coating and R2R slot die coating(B) making quasi?2D perovskites film of special shape[58]Copyright 2019, Wiley‐VCH.
Fig.12 Spin coating of first step and solid?air method of second step(A)[68] and spin coating of first step and dipping duration of second step making quasi?2D perovskites films(B)[69](A) Copyright 2018, The Royal Society of Chemistry; (B) Copyright 2016, Wiley‐VCH.
Fig.13 Schematic diagram of 3D perovskite crystal structure(A), 2D perovskite crystal structure for n=1(d and L represent thickness of inorganic layers and organic layer )(B) and 2D perovskite for n=1 with quantum well energy diagram(C)[70]Copyright 2018, American Chemical Society.
Perovskite film | Eg/meV | |||
---|---|---|---|---|
n=1 | n=2 | n=3 | n=4 | |
BA2(MA)n-1(Pb)n(I)3n+1 | 2.35 | 2.12 | 2.01 | 1.90 |
3AMP(MA)n-1(Pb)n(I)3n+1 | 2.22 | 2.00 | 1.90 | 1.84 |
GA(MA)n-1(Pb)n(I)3n+1 | 2.27 | 1.99 | 1.73 | — |
MAPbI3 | 1.60(n=∞) |
Table 2 Summary of band gaps for different n value and 2D structure[29, 32]
Perovskite film | Eg/meV | |||
---|---|---|---|---|
n=1 | n=2 | n=3 | n=4 | |
BA2(MA)n-1(Pb)n(I)3n+1 | 2.35 | 2.12 | 2.01 | 1.90 |
3AMP(MA)n-1(Pb)n(I)3n+1 | 2.22 | 2.00 | 1.90 | 1.84 |
GA(MA)n-1(Pb)n(I)3n+1 | 2.27 | 1.99 | 1.73 | — |
MAPbI3 | 1.60(n=∞) |
Fig.14 Schematic illustration of four typical device structures applied in perovskite solar cells of n?i?p?mesoscopic(A), n?i?p planar(B), p?i?n mesoscopic(C) and p?i?n planar structures(D)[88]Copyright 2018, Springer Nature.
A′ site | Structure | Device configuration | PCE(%) | Stability | Ref. |
---|---|---|---|---|---|
iso?BA | (iso?BA)2MA3Pb4I13 (n=4) | FTO/C60/2D PER/ Spiro?OMeTAD/Au | 10.6 | ― | [ |
AA | AA2MA3Pb4I13 (n=4) | ITO/PTAA/2D PER/C60/ BCP/Ag | 18.4 | 99% of PCE after 1850 h (N2 gloves) | [ |
F?PEA | (F?PEA)2MA4Pb5I16 (n=5) | FTO/c?TiO2/2D PER/ Spiro?OMeTAD/Au | 13.6 | 65% of PCE after 576 h (70 ℃, N2 gloves) | [ |
MTEA | (MTEA)2MA4Pb5I16 (n=5) | ITO/PEDOT∶PSS/2D PER/P CBM/BCP/Ag | 18.0 | 87.1% of PCE after 1000 h (N2 gloves, continuous light soaking) | [ |
THMA | THMA2MA2Pb3I10 (n=3) | ITO/PEDOT∶ PSS/2DPER/ PCBM/BCP/Ag | 15.4 | 90% of PCE after 1000 h (N2 gloves) | [ |
4AEP | (4AEP)2MA4Pb5I16 (n=5) | FTO/C60/2D PER/ Spiro?OMeTAD/Au | 11.6 | 95% of PCE after 1000 h (atmosphere, humidity 30%) | [ |
Table 3 Summary of device performance of RP-quasi-2D-PSCs by different organic spacer cations(OSC)
A′ site | Structure | Device configuration | PCE(%) | Stability | Ref. |
---|---|---|---|---|---|
iso?BA | (iso?BA)2MA3Pb4I13 (n=4) | FTO/C60/2D PER/ Spiro?OMeTAD/Au | 10.6 | ― | [ |
AA | AA2MA3Pb4I13 (n=4) | ITO/PTAA/2D PER/C60/ BCP/Ag | 18.4 | 99% of PCE after 1850 h (N2 gloves) | [ |
F?PEA | (F?PEA)2MA4Pb5I16 (n=5) | FTO/c?TiO2/2D PER/ Spiro?OMeTAD/Au | 13.6 | 65% of PCE after 576 h (70 ℃, N2 gloves) | [ |
MTEA | (MTEA)2MA4Pb5I16 (n=5) | ITO/PEDOT∶PSS/2D PER/P CBM/BCP/Ag | 18.0 | 87.1% of PCE after 1000 h (N2 gloves, continuous light soaking) | [ |
THMA | THMA2MA2Pb3I10 (n=3) | ITO/PEDOT∶ PSS/2DPER/ PCBM/BCP/Ag | 15.4 | 90% of PCE after 1000 h (N2 gloves) | [ |
4AEP | (4AEP)2MA4Pb5I16 (n=5) | FTO/C60/2D PER/ Spiro?OMeTAD/Au | 11.6 | 95% of PCE after 1000 h (atmosphere, humidity 30%) | [ |
A′ site | Structure | Device configuration | PCE(%) | Stability | Ref. |
---|---|---|---|---|---|
PDA | (PDA)MA4Pb5I16(n=5) | ITO/PEDOT∶PSS/2D PER/ PC60BM/LiF/Al | 14.1 | 28% of PCE after 20 d (atmosphere, humidity 45%) | [ |
BDA | (BDA)MA4Pb5I16(n=5) | ITO/PEDOT∶PSS/2D PER/ PC60BM/LiF/Al | 16.3 | 80% of PCE after 20 d (atmosphere, humidity 45%) | [ |
PEDA | (PeDA)MA4Pb5I16(n=5) | ITO/PEDOT∶PSS/2D PER/ PC60BM/LiF/Al | 12.9 | 100% of PCE after 20 d (atmosphere, humidity 45%) | [ |
HDA | (HDA)MA4Pb5I16(n=5) | ITO/PEDOT∶PSS/2D PER/ PC60BM/LiF/Al | 10.5 | 60% of PCE after 20 d (atmosphere, humidity 45%) | [ |
3AMP | (3AMP)MA3Pb4I13 | FTO/PEDOT∶PSS/2D PER/ C60/BCP/Ag | 7.32 | ― | [ |
4AMP | (4AMP)MA3Pb4I13 | FTO/PEDOT∶PSS/2D PER/C60/BCP/Ag | 4.24 | ― | [ |
3AMPY | (3AMPY)MA3Pb4I13 | FTO/PEDOT∶PSS/2D PER/C60/BCP/Ag | 9.20 | ― | [ |
4AMPY | (4AMP)MA3Pb4I13 | FTO/PEDOT∶PSS/2D PER/C60/BCP/Ag | 5.69 | ― | [ |
PDMA | (PDMA)A9Pb10(I0.93Br0.07)31 | FTO/c?TiO2/mp?TiO2/2D PER/Spiro?MeOTAD/Au | 15.6 | 80% of PCE after 84 d (atmosphere, humidity 20%―50%) | [ |
BDA | (BDA)MA4Pb5I16 | ITO/PEDOT∶PSS/2D PER/PC60BM/LiF/Al | 17.9 | 84% of PCE after 1182 h (atmosphere, humility 60%) | [ |
MAMP | (MAMP)MA3Pb4I13 | FTO/TiO2/2D PER/Spiro? MeOTAD/Au | 16.5 | 90% of PCE after 217 h (Continuous light soaking) | [ |
Table 4 Summary of device performance of DJ-quasi-2D-PSCs by different organic spacer cations(OSC)
A′ site | Structure | Device configuration | PCE(%) | Stability | Ref. |
---|---|---|---|---|---|
PDA | (PDA)MA4Pb5I16(n=5) | ITO/PEDOT∶PSS/2D PER/ PC60BM/LiF/Al | 14.1 | 28% of PCE after 20 d (atmosphere, humidity 45%) | [ |
BDA | (BDA)MA4Pb5I16(n=5) | ITO/PEDOT∶PSS/2D PER/ PC60BM/LiF/Al | 16.3 | 80% of PCE after 20 d (atmosphere, humidity 45%) | [ |
PEDA | (PeDA)MA4Pb5I16(n=5) | ITO/PEDOT∶PSS/2D PER/ PC60BM/LiF/Al | 12.9 | 100% of PCE after 20 d (atmosphere, humidity 45%) | [ |
HDA | (HDA)MA4Pb5I16(n=5) | ITO/PEDOT∶PSS/2D PER/ PC60BM/LiF/Al | 10.5 | 60% of PCE after 20 d (atmosphere, humidity 45%) | [ |
3AMP | (3AMP)MA3Pb4I13 | FTO/PEDOT∶PSS/2D PER/ C60/BCP/Ag | 7.32 | ― | [ |
4AMP | (4AMP)MA3Pb4I13 | FTO/PEDOT∶PSS/2D PER/C60/BCP/Ag | 4.24 | ― | [ |
3AMPY | (3AMPY)MA3Pb4I13 | FTO/PEDOT∶PSS/2D PER/C60/BCP/Ag | 9.20 | ― | [ |
4AMPY | (4AMP)MA3Pb4I13 | FTO/PEDOT∶PSS/2D PER/C60/BCP/Ag | 5.69 | ― | [ |
PDMA | (PDMA)A9Pb10(I0.93Br0.07)31 | FTO/c?TiO2/mp?TiO2/2D PER/Spiro?MeOTAD/Au | 15.6 | 80% of PCE after 84 d (atmosphere, humidity 20%―50%) | [ |
BDA | (BDA)MA4Pb5I16 | ITO/PEDOT∶PSS/2D PER/PC60BM/LiF/Al | 17.9 | 84% of PCE after 1182 h (atmosphere, humility 60%) | [ |
MAMP | (MAMP)MA3Pb4I13 | FTO/TiO2/2D PER/Spiro? MeOTAD/Au | 16.5 | 90% of PCE after 217 h (Continuous light soaking) | [ |
Fig.15 Compare light and thermal stability by different organic spacers of chain length(C4, C5, C6) and <n> value(A)[71] and relationship between formation energy and stability of 2D perovskites(B)[146](A) Copyright 2016, American Chemical Society; (B) Copyright 2019, American Chemical Society.
Fig.16 Stability of the quasi?2D perovskites film under air stability(A, B) and heat stability(continuous at 85 °C)(D, E), thermal stability of the perovskites films(C), operational stability of quasi?2D?PSCs in N2 glovebox(F)[24]Copyright 2020, Springer Nature.
1 | Ruddlesden S. N., Popper P., Acta Crystallogr.,1957, 10, 538―540 |
2 | Maruyama S., Seno T., Tectonophysics.,1986, 127, 305―329 |
3 | Hirasawa M., Ishihara T., Goto T., Uchida K., Miura N., Physica B,1994, 201, 427―430 |
4 | Ishihara T., Takahashi J., Goto T., Solid State Commun.,1989, 69, 933―936 |
5 | Anderson M. T., Greenwood K. B., Taylor G. A., Poeppelmeier K. R., Progress in Solid State Chemistry,1993, 22, 197―233 |
6 | Mitzi D. B., Feild C. A., Harrison W. T. A., Guloy A. M., Nature,1994, 369, 467―469 |
7 | Mitzi D., Wang S., Feild C., Chess C., Guloy A., Science,1995, 267, 1473―1476 |
8 | Smith I. C., Hoke E. T., Solis⁃Ibarra D., McGehee M. D., Karunadasa H. I., Angew. Chem. Int. Ed.,2014, 53, 11232―11235 |
9 | Lin Y., Fang Y. J., Zhao J. J., Shao Y. C., Stuard S. J., Nahid M. M., Ade H., Wang Q., Shield J. E., Zhou N. H., Moran A. M., Huang J. S., Nat. Commun.,2019, 10, 11 |
10 | Wang G. W., Hou C. J., Long H. T., Yang L. J., Wang Y., Acta Physico⁃Chimica Sinica,2019, 35(12), 1319―1340(王根旺, 侯超剑, 龙昊天, 杨立军, 王扬. 物理化学学报, 2019, 35(12), 1319―1340) |
11 | Shannon R. D., Acta Crystallogr. Sect. A,1976, 32, 751―767 |
12 | Goldschmidt V. M., Naturwissenschaften,1926, 14, 477―485 |
13 | Saparov B., Mitzi D. B., Chem. Rev.,2016, 116, 4558―4596 |
14 | Kieslich G., Sun S. J., Cheetham A. K., Chem. Sci.,2014, 5, 4712―4715 |
15 | Mitzi D. B., J. Chem. Soc. Dalton Trans.,2001, 1―12 |
16 | Mao L., Stoumpos C. C., Kanatzidis M. G., J. Am. Chem. Soc.,2019, 141, 1171―1190 |
17 | Lai H., Lu D., Xu Z., Zheng N., Xie Z., Liu Y., Adv. Mater.,2020, 2001470 |
18 | Sun C., Wang M. S., Li P. X., Guo G. C., Angew. Chem. Int. Ed.,2017, 56, 554―558 |
19 | Mao L., Guo P., Kepenekian M., Hadar I., Katan C., Even J., Schaller R. D., Stoumpos C. C., Kanatzidis M. G., J. Am. Chem. Soc.,2018, 140, 13078―13088 |
20 | Kamminga M. E., de Wijs G. A., Havenith R. W. A., Blake G. R., Palstra T. T. M., Inorg. Chem.,2017, 56, 8408―8414 |
21 | Kamminga M. E., Fang H. H., Filip M. R., Giustino F., Baas J., Blake G. R., Loi M. A., Palstra T. T. M., Chem. Mater.,2016, 28, 4554―4562 |
22 | Vargas B., Ramos E., Perez⁃Gutierrez E., Alonso J. C., Solis⁃Ibarra D., J. Am. Chem. Soc.,2017, 139, 9116―9119 |
23 | Stoumpos C. C., Kanatzidis M. G., Acc. Chem. Res.,2015, 48, 2791―2802 |
24 | Ren H., Yu S., Chao L., Xia Y., Sun Y., Zuo S., Li F., Niu T., Yang Y., Ju H., Li B., Du H., Gao X., Zhang J., Wang J., Zhang L., Chen Y., Huang W., Nat. Photon.,2020, 14, 154―163 |
25 | Ortiz‐Cervantes C., Carmona‐Monroy P., Solis‐Ibarra D., ChemSusChem,2019, 12, 1560―1575 |
26 | Connor B. A., Leppert L., Smith M. D., Neaton J. B., Karunadasa H. I., J. Am. Chem. Soc.,2018, 140, 5235―5240 |
27 | Billing D. G., Lemmerer A., Acta Crystallogr.,2007, 63, 735―747 |
28 | Soe C. M. M., Stoumpos C. C., Kepenekian M., Traore B., Tsai H., Nie W., Wang B., Katan C., Seshadri R., Mohite A. D., Even J., Marks T. J., Kanatzidis M. G., J. Am. Chem. Soc.,2017, 139, 16297―16309 |
29 | Mao L., Ke W., Pedesseau L., Wu Y., Katan C., Even J., Wasielewski M. R., Stoumpos C. C., Kanatzidis M. G., J. Am. Chem. Soc.,2018, 140, 3775―3783 |
30 | Paritmongkol W., Dahod N. S., Stollmann A., Mao N., Settens C., Zheng S. L., Tisdale W. A., Chem. Mater.,2019, 31, 5592―5607 |
31 | Ruddlesden S. N., Popper P., Acta Crystallogr.,1958, 11, 54―55 |
32 | Cao D. H., Stoumpos C. C., Farha O. K., Hupp J. T., Kanatzidis M. G., J. Am. Chem. Soc.,2015, 137, 7843―7850 |
33 | Hervoches C. H., Lightfoot P., Chem. Mater.,1999, 11, 3359―3364 |
34 | Zhang Y. L., Wang P. J., Tang M. C., Barrit D., Ke W. J., Liu J. X., Luo T., Liu Y. C., Niu T. Q., Smilgies D. M., Yang Z., Liu Z. K., Jin S. Y., Kanatzidis M. G., Arnassian A., Liu S. Z. F., Zhao K., J. Am. Chem. Soc.,2019, 141, 2684―2694 |
35 | Szafranski M., Stahl K., Phys. Rev. B,2000, 62, 8787―8793 |
36 | Boopathi K. M., Karuppuswamy P., Singh A., Hanmandlu C., Lin L., Abbas S. A., Chang C. C., Wang P. C., Li G., Chu C. W., J. Mater. Chem. A,2017, 5, 20843―20850 |
37 | Correa⁃Baena J. P., Nienhaus L., Kurchin R. C., Shin S. S., Wieghold S., Putri Hartono N. T., Layurova M., Klein N. D., Poindexter J. R., Polizzotti A., Sun S., Bawendi M. G., Buonassisi T., Chem. Mater.,2018, 30, 3734―3742 |
38 | Jiang F., Yang D., Jiang Y., Liu T., Zhao X., Ming Y., Luo B., Qin F., Fan J., Han H., Zhang L., Zhou Y., J. Am. Chem. Soc.,2018, 140, 1019―1027 |
39 | Chatterjee S., Pal A. J., ACS Appl. Mater. Interfaces,2018, 10, 35194―35205 |
40 | Wang J., Luo S., Lin Y., Chen Y., Deng Y., Li Z., Meng K., Chen G., Huang T., Xiao S., Huang H., Zhou C., Ding L., He J., Huang J., Yuan Y., Nat. Commun.,2020, 11, 582 |
41 | Tsai H., Nie W., Blancon J. C., Stoumpos C. C., Asadpour R., Harutyunyan B., Neukirch A. J., Verduzco R., Crochet J. J., Tretiak S., Pedesseau L., Even J., Alam M. A., Gupta G., Lou J., Ajayan P. M., Bedzyk M. J., Kanatzidis M. G., Nature,2016, 536, 312―316 |
42 | Passarelli J. V., Fairfield D. J., Sather N. A., Hendricks M. P., Sai H., Stern C. L., Stupp S. I., J. Am. Chem. Soc.,2018, 140, 7313―7323 |
43 | Li Y., Milić J. V., Ummadisingu A., Seo J. Y., Im J. H., Kim H. S., Liu Y., Dar M. I., Zakeeruddin S. M., Wang P., Hagfeldt A., Grätzel M., Nano Lett.,2018, 19, 150―157 |
44 | Ahmad S., Fu P., Yu S., Yang Q., Liu X., Wang X., Wang X., Guo X., Li C., Joule,2019, 3, 794―806 |
45 | Stoumpos C. C., Cao D. H., Clark D. J., Young J., Rondinelli J. M., Jang J. I., Hupp J. T., Kanatzidis M. G., Chem. Mater.,2016, 28, 2852―2867 |
46 | Chen A. Z., Shiu M., Deng X., Mahmoud M., Zhang D., Foley B. J., Lee S. H., Giri G., Choi J. J., Chem. Mater.,2019, 31, 1336―1343 |
47 | Soe C. M. M., Nagabhushana G. P., Shivaramaiah R., Tsai H. H., Nie W. Y., Blancon J. C., Melkonyan F., Cao D. H., Traore B., Pedesseau L., Kepenekian M., Katan C., Even J., Marks T. J., Navrotsky A., Mohite A. D., Stoumpos C. C., Kanatzidis M. G., Proc. Natl. Acad. Sci. USA,2019, 116, 58―66 |
48 | Safdari M., Svensson P. H., Hoang M. T., Oh I., Kloo L., Gardner J. M., J. Mater. Chem. A,2016, 4, 15638―15646 |
49 | Safdari M., Phuyal D., Philippe B., Svensson P. H., Butorin S. M., Kvashnina K. O., Rensmo H., Kloo L., Gardner J. M., J. Mater. Chem. A,2017, 5, 11730―11738 |
50 | Liang C., Gu H., Xia Y., Wang Z., Liu X., Xia J., Zuo S., Hu Y., Gao X., Hui W., Chao L., Niu T., Fang M., Lu H., Dong H., Yu H., Chen S., Ran X., Song L., Li B., Zhang J., Peng Y., Shao G., Wang J., Chen Y., Xing G., Huang W., Nat. Energy,2020, 6, 38―45 |
51 | Zhang J., Qin J., Wang M., Bai Y., Zou H., Keum J. K., Tao R., Xu H., Yu H., Haacke S., Hu B., Joule,2019, 3, 3061―3071 |
52 | He T., Li S., Jiang Y., Qin C., Cui M., Qiao L., Xu H., Yang J., Long R., Wang H., Yuan M., Nat. Commun.,2020, 11, 1672 |
53 | Proppe A. H., Quintero⁃Bermudez R., Tan H., Voznyy O., Kelley S. O., Sargent E. H., J. Am. Chem. Soc.,2018, 140, 2890―2896 |
54 | Qing J., Liu X. K., Li M., Liu F., Yuan Z., Tiukalova E., Yan Z., Duchamp M., Chen S., Wang Y., Bai S., Liu J. M., Snaith H. J., Lee C. S., Sum T. C., Gao F., Adv. Energy Mater.,2018, 8, 1800185 |
55 | Liu J. X., Leng J., Wu K. F., Zhang J., Jin S. Y., J. Am. Chem. Soc.,2017, 139, 1432―1435 |
56 | Wu G., Li X., Zhou J., Zhang J., Zhang X., Leng X., Wang P., Chen M., Zhang D., Zhao K., Adv Mater.,2019, 31, 1903889 |
57 | Chen A. Z., Shiu M., Ma J. H., Alpert M. R., Zhang D., Foley B. J., Smilgies D. M., Lee S. H., Choi J. J., Nat. Commun.,2018, 9, 1336 |
58 | Zuo C., Scully A. D., Vak D., Tan W., Jiao X., McNeill C. R., Angmo D., Ding L., Gao M., Adv. Energy Mater.,2019, 9, 1803258 |
59 | Burschka J., Pellet N., Moon S. J., Humphry⁃Baker R., Gao P., Nazeeruddin M. K., Grätzel M., Nature,2013, 499, 316―319 |
60 | Liu M., Johnston M. B., Snaith H. J., Nature,2013, 501, 395―398 |
61 | Razza S., Di Giacomo F., Matteocci F., Cinà L., Palma A. L., Casaluci S., Cameron P., D'Epifanio A., Licoccia S., Reale A., Brown T. M., Di Carlo A., J. Power Sources,2015, 277, 286―291 |
62 | Sutherland B. R., Hoogland S., Adachi M. M., Kanjanaboos P., Wong C. T., McDowell J. J., Xu J., Voznyy O., Ning Z., Houtepen A. J., Sargent E. H., Adv Mater.,2015, 27, 53―58 |
63 | Im J. H., Jang I. H., Pellet N., Gratzel M., Park N. G., Nat. Nanotechnol.,2014, 9, 927―932 |
64 | Chen Q., Zhou H., Hong Z., Luo S., Duan H. S., Wang H. H., Liu Y., Li G., Yang Y., J. Am. Chem. Soc.,2014, 136, 622―625 |
65 | Leyden M. R., Ono L. K., Raga S. R., Kato Y., Wang S., Qi Y., J. Mater. Chem. A,2014, 2, 18742―18745 |
66 | Huang H., Shi J., Zhu L., Li D., Luo Y., Meng Q., Nano Energy,2016, 27, 352―358 |
67 | Chen L., Tang F., Wang Y., Gao S., Cao W., Cai J., Chen L., Nano Res.,2015, 8, 263―270 |
68 | Zhu X., Xu Z., Zuo S., Feng J., Wang Z., Zhang X., Zhao K., Zhang J., Liu H., Priya S., Liu S. F., Yang D., Energy Environ. Sci.,2018, 11, 3349―3357 |
69 | Koh T. M., Shanmugam V., Schlipf J., Oesinghaus L., Müller‐Buschbaum P., Ramakrishnan N., Swamy V., Mathews N., Boix P. P., Mhaisalkar S. G., Adv Mater.,2016, 28, 3653―3661 |
70 | Straus D. B., Kagan C. R., J. Phys. Chem. Lett.,2018, 9, 1434―1447 |
71 | Quan L. N., Yuan M., Comin R., Voznyy O., Beauregard E. M., Hoogland S., Buin A., Kirmani A. R., Zhao K., Amassian A., Kim D. H., Sargent E. H., J. Am. Chem. Soc.,2016, 138, 2649―2655 |
72 | Gebhardt J., Kim Y., Rappe A. M., J. Phys. Chem. C,2017, 121, 6569―6574 |
73 | Even J., Pedesseau L., Jancu J. M., Katan C., J. Phys. Chem. Lett.,2013, 4, 2999―3005 |
74 | Even J., Pedesseau L., Katan C., Kepenekian M., Lauret J. S., Sapori D., Deleporte E., J. Phys. Chem. C,2015, 119, 10161―10177 |
75 | Prince M. B., J. Appl. Phys.,1955, 26, 534―540 |
76 | Guillemoles J. F., Kirchartz T., Cahen D., Rau U., Nat. Photon.,2019, 13, 501―505 |
77 | Slavney A. H., Smaha R. W., Smith I. C., Jaffe A., Umeyama D., Karunadasa H. I., Inorg. Chem.,2017, 56, 46―55 |
78 | Herz L. M., Annu. Rev. Phys. Chem.,2016, 67, 65―89 |
79 | Even J., Pedesseau L., Katan C., ChemPhysChem,2014, 15, 3733―3741 |
80 | Tsai H. H., Asadpour R., Blancon J. C., Stoumpos C. C., Even J., Ajayan P. M., Kanatzidis M. G., Alam M. A., Mohite A. D., Nie W. Y., Nat. Commun.,2018, 9, 9 |
81 | Blancon J., Tsai H., Nie W., Stoumpos C. C., Pedesseau L., Katan C., Kepenekian M., Soe C. M. M., Appavoo K., Sfeir M. Y., Science,2017, 355, 1288―1292 |
82 | Blancon J. C., Stier A. V., Tsai H., Nie W., Stoumpos C. C., Traore B., Pedesseau L., Kepenekian M., Katsutani F., Noe G. T., Kono J., Tretiak S., Crooker S. A., Katan C., Kanatzidis M. G., Crochet J. J., Even J., Mohite A. D., Nat. Commun.,2018, 9, 2254 |
83 | Hong X., Ishihara T., Nurmikko A. V., Phys. Rev. B, 1992, 45, 6961―6964 |
84 | Muljarov E. A., Tikhodeev S. G., Gippius N. A., Ishihara T., Phys. Rev. B,1995, 51, 14370―14378 |
85 | Elleuch S., Dammak T., Abid Y., Mlayah A., Boughzala H., J. Lumin.,2010, 130, 531―535 |
86 | Christol P., Lefebvre P., Mathieu H., J. Appl. Phys.,1993, 74, 5626―5637 |
87 | Liu J., Leng J., Wu K., Zhang J., Jin S., J. Am. Chem. Soc.,2017, 139, 1432―1435 |
88 | Hussain I., Tran H. P., Jaksik J., Moore J., Islam N., Uddin M. J., Emergent Mater.,2018, 1, 133―154 |
89 | Chiba Y., Islam A., Watanabe Y., Komiya R., Koide N., Han L., Jpn. J. Appl. Phys.,2006, 45, L638―L640 |
90 | Kojima A., Teshima K., Shirai Y., Miyasaka T., J. Am. Chem. Soc.,2009, 131, 6050―6051 |
91 | Meng L., You J., Guo T. F., Yang Y., Acc. Chem. Res.,2016, 49, 155―165 |
92 | Chen W., Wu Y., Liu J., Qin C., Yang X., Islam A., Cheng Y. B., Han L., Energy Environ. Sci.,2015, 8, 629―640 |
93 | Wang K. C., Jeng J. Y., Shen P. S., Chang Y. C., Diau E. W., Tsai C. H., Chao T. Y., Hsu H. C., Lin P. Y., Chen P., Guo T. F., Wen T. C., Sci. Rep.,2014, 4, 4756 |
94 | Wu G., Zhou J., Zhang J., Meng R., Wang B., Xue B., Leng X., Zhang D., Zhang X., Bi S., Zhou Q., Wei Z., Zhou H., Zhang Y., Nano Energy,2019, 58, 706―714 |
95 | Huang P., Yuan L. G., Li Y. W., Zhou Y., Song B., Acta Phys. Chim. Sinica,2018, 34(11), 1264―1271(黄鹏,元利刚,李耀文, 周祎,宋波. 物理化学学报, 2018, 34(11), 1264―1271) |
96 | Wang B. X., Wu F., Bi S. Q., Zhou J. Y., Wang J. Q., Leng X. Y., Zhang D. Y., Meng R., Xue B. D., Zong C. Z., Zhu L. N., Zhang Y., Zhou H. Q., J. Mater. Chem. A,2019, 7, 23895―23903 |
97 | Wang M. H., Wan L., Gao X. Y., Yuan W. B., Fang J. F., Tao Y. T., Huang W., Acta Chimica Sinica,2019, 77(8), 741―750(王梦涵, 万里, 高旭宇, 袁文博, 方俊峰, 陶友田, 黄维. 化学学报, 2019, 77(8), 741―750) |
98 | Chen W., Wu Y. Z., Yue Y. F., Liu J., Zhang W. J., Yang X. D., Chen H., Bi E. B., Ashraful I., Gratzel M., Han L. Y., Science,2015, 350, 944―948 |
99 | Chen R., Wang W., Bu T. L., Ku Z. L., Zhong J., Peng Y., Xiao S. Q., You W., Huang F. Z., Cheng Y. B., Fu Z. Y., Acta Phys. Chim. Sinica,2019, 35(4), 401―407(陈瑞, 王维, 卜童乐, 库治良, 钟杰, 彭勇, 肖生强, 尤为, 黄福志, 程一兵, 傅正义. 物理化学学报, 2019, 35(4), 401―407) |
100 | Yang Y., Zhu C. T., Lin F. Y., Chen T., Pan D. Q., Guo X. Y., Acta Chimica Sinica,2019, 77(10), 964―976(杨英, 朱从潭, 林飞宇, 陈甜, 潘德群, 郭学益. 化学学报, 2019, 77(10), 964―976) |
101 | Li Y., Cheng H., Zhao K., Wang Z. S., ACS Appl. Mater. Interfaces,2019, 11, 37804―37811 |
102 | Chen Y., Sun Y., Peng J., Zhang W., Su X., Zheng K., Pullerits T., Liang Z., Adv. Energy Mater.,2017, 7, 1700162 |
103 | Lai H., Kan B., Liu T., Zheng N., Xie Z., Zhou T., Wan X., Zhang X., Liu Y., Chen Y., J. Am. Chem. Soc.,2018, 140, 11639―11646 |
104 | Zhang F., Kim D. H., Lu H., Park J. S., Larson B. W., Hu J., Gao L., Xiao C., Reid O. G., Chen X., Zhao Q., Ndione P. F., Berry J. J., You W., Walsh A., Beard M. C., Zhu K., J. Am. Chem. Soc.,2019, 141, 5972―5979 |
105 | Wu G., Yang T., Li X., Ahmad N., Zhang X., Yue S., Zhou J., Li Y., Wang H., Shi X., Liu S., Zhao K., Zhou H., Zhang Y., Matter.,2020, 4, 582―599 |
106 | Smith I. C., Hoke E. T., Solis⁃Ibarra D., McGehee M. D., Karunadasa H. I., Angew. Chem. Int. Ed.,2014, 53, 11232―11235 |
107 | He T., Li S., Jiang Y., Qin C., Cui M., Qiao L., Xu H., Yang J., Long R., Wang H., Yuan M., Nat. Commun.,2020, 11 |
108 | Gao L., Zhang F., Xiao C., Chen X., Larson B. W., Berry J. J., Zhu K., Adv. Funct. Mater.,2019, 29, 1901652 |
109 | Soe C. M. M., Nie W., Stoumpos C. C., Tsai H., Blancon J. C., Liu F., Even J., Marks T. J., Mohite A. D., Kanatzidis M. G., Adv. Energy Mater.,2018, 8, 1700979 |
110 | Lian X., Chen J., Zhang Y., Qin M., Andersen T. R., Ling J., Wu G., Lu X., Yang D., Chen H., J. Mater. Chem. A,2019, 7, 19423―19429 |
111 | Yan L., Hu J., Guo Z., Chen H., Toney M. F., Moran A. M., You W., ACS Appl. Mater. Interfaces, 2018, 10, 33187―33197 |
112 | Koh T. M., Shanmugam V., Schlipf J., Oesinghaus L., Müller‐Buschbaum P., Ramakrishnan N., Swamy V., Mathews N., Boix P. P., Mhaisalkar S. G., Adv Mater.,2016, 28, 3653―3661 |
113 | Shao S., Duim H., Wang Q., Xu B., Dong J., Adjokatse S., Blake G. R., Protesescu L., Portale G., Hou J., Saba M., Loi M. A., ACS Energy Lett.,2019, 5, 39―46 |
114 | Zhao X., Liu T., Kaplan A. B., Yao C., Loo Y. L., Nano Lett.,2020, 20, 8880―8889 |
115 | Nie W. Y., Tsai H. H., Asadpour R., Blancon J. C., Neukirch A. J., Gupta G., Crochet J. J., Chhowalla M., Tretiak S., Alam M. A., Wang H. L., Mohite A. D., Science,2015, 347, 522―525 |
116 | Zhou N., Huang B., Sun M., Zhang Y., Li L., Lun Y., Wang X., Hong J., Chen Q., Zhou H., Adv. Energy Mater.,2019, 10, 1901566 |
117 | Li X., Wu G., Zhou J., Zhang J., Zhang X., Wang B., Xia H., Zhou H., Zhang Y., Small,2020, 16, 1906997 |
118 | Long M., Zhang T., Chen D., Qin M., Chen Z., Gong L., Lu X., Xie F., Xie W., Chen J., Xu J., ACS Energy Lett.,2019, 4, 1025―1033 |
119 | Zhang X., Ren X., Liu B., Munir R., Zhu X., Yang D., Li J., Liu Y., Smilgies D. M., Li R., Yang Z., Niu T., Wang X., Amassian A., Zhao K., Liu S., Energy Environ. Sci.,2017, 10, 2095―2102 |
120 | Zhou N., Shen Y., Li L., Tan S., Liu N., Zheng G., Chen Q., Zhou H., J. Am. Chem. Soc.,2018, 140, 459―465 |
121 | Xu Q., Meng K., Liu Z., Wang X., Hu Y., Qiao Z., Li S., Cheng L., Chen G., Adv. Mater. Interfaces,2019, 6, 1901259 |
122 | Gao L., Zhang F., Chen X., Xiao C., Larson B. W., Dunfield S. P., Berry J. J., Zhu K., Angew. Chem. Int. Ed.,2019, 58, 11737―11741 |
123 | Zhang X., Wu G., Yang S., Fu W., Zhang Z., Chen C., Liu W., Yan J., Yang W., Chen H., Small,2017, 13, 1700611 |
124 | Fu W., Wang J., Zuo L., Gao K., Liu F., Ginger D. S., Jen A. K. Y., ACS Energy Lett.,2018, 3, 2086―2093 |
125 | Zhang X., Wu G., Fu W., Qin M., Yang W., Yan J., Zhang Z., Lu X., Chen H., Adv. Energy Mater.,2018, 8, 1702498 |
126 | Xie Y., Yu H., Duan J., Xu L., Hu B., ACS Appl. Mater. Interfaces,2020, 12, 11190―11196 |
127 | Zhang Y., Chen J., Lian X., Yang W., Li J., Tian S., Wu G., Chen H., Sci. China Chem.,2019, 62, 859―865 |
128 | Li X., Wu G., Wang M., Yu B., Zhou J., Wang B., Zhang X., Xia H., Yue S., Wang K., Zhang C., Zhang J., Zhou H., Zhang Y., Adv. Energy Mater., 2020, 10, 2001832 |
129 | Zheng Y. T., Niu T. T., Qiu J., Chao L. F., Li B. X., Yang Y. G., Li Q., Lin C. Q., Gao X. Y., Zhang C. F., Xia Y. D., Chen Y. H., Huang W., Solar RRL,2019, 3, 1900090 |
130 | Niu T., Ren H., Wu B., Xia Y., Xie X., Yang Y., Gao X., Chen Y., Huang W., J. Phys. Chem. Lett.,2019, 10, 2349―2356 |
131 | Ke W., Mao L., Stoumpos C. C., Hoffman J., Spanopoulos I., Mohite A. D., Kanatzidis M. G., Adv. Energy Mater.,2019, 9, 1803384 |
132 | Li X. T., Ke W. J., Traore B., Guo P. J., Hadar I., Kepenekian M., Even J., Katan C., Stoumpos C. C., Schaller R. D., Kanatzidis M. G., J. Am. Chem. Soc.,2019, 141, 12880―12890 |
133 | Cohen B. E., Li Y., Meng Q., Etgar L., Nano Lett.,2019, 19, 2588―2597 |
134 | Luo T., Zhang Y., Xu Z., Niu T., Wen J., Lu J., Jin S., Liu S. F., Zhao K., Adv Mater. 2019, 31, e1903848 |
135 | Li P., Liang C., Liu X. L., Li F., Zhang Y., Liu X. T., Gu H., Hu X., Xing G., Tao X., Song Y., Adv. Mater.,2019, 31, e1901966 |
136 | Cao D. H., Stoumpos C. C., Yokoyama T., Logsdon J. L., Song T. B., Farha O. K., Wasielewski M. R., Hupp J. T., Kanatzidis M. G., ACS Energy Lett.,2017, 2, 982―990 |
137 | Qiu J., Xia Y. D., Chen Y. H., Huang W., Adv. Sci.,2019, 6, 1800793 |
138 | Li F., Xie Y., Hu Y., Long M., Zhang Y., Xu J., Qin M., Lu X., Liu M., ACS Energy Lett.,2020, 5, 1422―1429 |
139 | Liao Y. Q., Liu H. F., Zhou W. J., Yang D. W., Shang Y. Q., Shi Z. F., Li B. H., Jiang X. Y., Zhang L. J., Quan L. N., Quintero⁃ Bermudez R., Sutherland B. R., Mi Q. X., Sargent E. H., Ning Z. L., J. Am. Chem. Soc.,2017, 139, 6693―6699 |
140 | Kim H., Lee Y. H., Lyu T., Yoo J. H., Park T., Oh J. H., J. Mater. Chem. A,2018, 6, 18173―18182 |
141 | Zimmermann I., Aghazada S., Nazeeruddin M. K., Angew. Chem. Int. Ed.,2019, 58, 1072―1076 |
142 | Xu H. Y., Jiang Y. Z., He T. W., Li S. S., Wang H. H., Chen Y., Yuan M. J., Chen J., Adv. Funct. Mater.,2019, 29, 1807696 |
143 | Chen M., Ju M. G., Hu M. Y., Dai Z. H., Hu Y., Rong Y. G., Han H. W., Zeng X. C., Zhou Y. Y., Padture N. P., ACS Energy Lett.,2019, 4, 276―277 |
144 | Mitzi D. B., Medeiros D. R., Malenfant P. R. L., Inorg. Chem.,2002, 41, 2134―2145 |
145 | Zhou Y., Wang F., Cao Y., Wang J. P., Fang H. H., Loi M. A., Zhao N., Wong C. P., Adv. Energy Mater.,2017, 7, 1701048 |
146 | Spanopoulos I., Hadar I., Ke W., Tu Q., Chen M., Tsai H., He Y., Shekhawat G., Dravid V. P., Wasielewski M. R., Mohite A. D., Stoumpos C. C., Kanatzidis M. G., J. Am. Chem. Soc.,2019, 141, 5518―5534 |
147 | Fajardy M., Chiquier S., Mac Dowell N., Energy Environ. Sci.,2018, 11, 3408―3430 |
148 | Zhu H., Zhang F., Xiao Y., Wang S., Li X., J. Mater. Chem. A,2018, 6, 4971―4980 |
149 | Zhang F., Wang S., Zhu H., Liu X., Liu H., Li X., Xiao Y., Zakeeruddin S. M., Grätzel M., ACS Energy Lett.,2018, 3, 1145―1152 |
150 | Zhang F., Wang Z., Zhu H., Pellet N., Luo J., Yi C., Liu X., Liu H., Wang S., Li X., Xiao Y., Zakeeruddin S. M., Bi D., Grätzel M., Nano Energy,2017, 41, 469―475 |
[1] | 楚宇逸, 兰畅, 罗二桂, 刘长鹏, 葛君杰, 邢巍. 单原子铈对弱芬顿效应活性位点氧还原稳定性的提升[J]. 高等学校化学学报, 2022, 43(9): 20220294. |
[2] | 郑安妮, 金磊, 杨家强, 王赵云, 李威青, 杨防祖, 詹东平, 田中群. 5,5-二甲基乙内酰脲在化学镀铜中的作用[J]. 高等学校化学学报, 2022, 43(8): 20220191. |
[3] | 施耐克, 张娅, SANSON Andrea, 王蕾, 陈骏. Zn(NCN)单轴的负热膨胀性及机理研究[J]. 高等学校化学学报, 2022, 43(6): 20220124. |
[4] | 王红宁, 黄丽, 清江, 马腾洲, 蒋伟, 黄维秋, 陈若愚. 香蒲基生物炭的活化及对VOCs吸附的应用[J]. 高等学校化学学报, 2022, 43(4): 20210824. |
[5] | 李伟辉, 李浩博, 曾诚, 梁昊樾, 陈佳俊, 李俊勇, 李会巧. 热压法构筑锂负极聚偏氟乙烯基双功能保护层的研究[J]. 高等学校化学学报, 2022, 43(2): 20210629. |
[6] | 常斯惠, 陈涛, 赵黎明, 邱勇隽. 离子液体增塑生物基聚丁内酰胺的热分解机理[J]. 高等学校化学学报, 2022, 43(11): 20220353. |
[7] | 孙金时, 陈鹏, 景丽萍, 孙福兴, 刘佳. 多级孔芳香骨架材料的合成及固载硫脲催化剂的研究[J]. 高等学校化学学报, 2022, 43(10): 20220171. |
[8] | 苏英立, 任海生, 李象远. 非平衡溶剂化新理论在有机染料电子光谱中的应用[J]. 高等学校化学学报, 2021, 42(7): 2254. |
[9] | 王红宁, 黄丽, 宋夫交, 朱婷, 黄维秋, 钟璟, 陈若愚. 中空碳纳米球的制备及VOCs吸附性能[J]. 高等学校化学学报, 2021, 42(6): 1704. |
[10] | 王坤华, 姚纪松, 杨俊楠, 宋永慧, 刘雨莹, 姚宏斌. 金属卤化物钙钛矿纳米晶高效发光二极管的制备与器件性能优化[J]. 高等学校化学学报, 2021, 42(5): 1464. |
[11] | 林生晃, 傅年庆, 鲍桥梁. 单元素二维材料及其衍生物作为电荷传输层在太阳能电池中应用的研究进展[J]. 高等学校化学学报, 2021, 42(2): 412. |
[12] | 刘瑶, 邓正涛. 反溶剂法快速合成高效发光二维锡卤钙钛矿材料[J]. 高等学校化学学报, 2021, 42(12): 3774. |
[13] | 张俊, 王彬, 潘莉, 马哲, 李悦生. 含咪唑离子聚乙烯离聚体的合成与性能[J]. 高等学校化学学报, 2020, 41(9): 2070. |
[14] | 王婷婷, 雷宇涵, 林宇娟, 黄加玲, 刘翠娥, 郑凤英, 李顺兴. 脂质体封端CsPbX3(X=Cl,Br,I)纳米晶体的制备及在发光二极管中的应用[J]. 高等学校化学学报, 2020, 41(8): 1896. |
[15] | 苗笑梅, 毛克羽, 裴勇兵, 蒋剑雄, 颜悦, 吴连斌. 超疏水多孔硅的制备及表面稳定性[J]. 高等学校化学学报, 2020, 41(7): 1499. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||