高等学校化学学报 ›› 2018, Vol. 39 ›› Issue (5): 977.doi: 10.7503/cjcu20170671

• 物理化学 • 上一篇    下一篇

全氟化和部分氟化锗纳米条带电学和磁学性质的理论研究

刘晶微, 于广涛, 沈小朋, 黄旭日, 陈巍   

  1. 吉林大学理论化学研究所, 理论化学计算实验室, 长春 130021
  • 收稿日期:2017-10-11 出版日期:2018-03-22 发布日期:2018-03-22
  • 作者简介:

    联系人简介: 陈 巍, 女, 博士, 教授, 博士生导师, 主要从事低维纳米材料和非线性光学材料的结构与性能研究. E-mail: w_chen@jlu.edu.cn; 于广涛, 男, 博士, 副教授, 主要从事低维纳米材料结构及性质的理论研究. E-mail: yugt@jlu.edu.cn

  • 基金资助:
    国家自然科学基金(批准号: 21673093, 21673094, 21373099, 21573090)、 吉林省科技发展计划项目(批准号: 20170101175JC, 20150101005JC)和吉林省教育厅科学技术研究项目(批准号: JJKH20170780KJ)资助.

Theoretical Studies on the Structures, Electronic and Magnetic Properties of Fully and Partically Fluorizated Germanene Nanoribbons

LIU Jingwei, YU Guangtao*, SHEN Xiaopeng, HUANG Xuri, CHEN Wei*   

  1. Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
  • Received:2017-10-11 Online:2018-03-22 Published:2018-03-22
  • Contact: YU Guangtao,CHEN Wei
  • Supported by:
    Supported by the National Natural Science Foundation of China(Nos.21673093, 21673094, 21373099, 21573090), the Jilin Provincial Science and Technology Development Plan, China(Nos.20170101175JC, 20150101005JC) and the Science and Technology Research Program of Education Department of Jilin Province, China(No.JJKH20170780KJ).

摘要:

通过第一性原理计算分别研究了锯齿型和扶手椅型全氟化和部分氟化锗纳米条带的几何结构、 稳定性、 电学和磁学性质. 结果表明, 两类全氟化锗纳米条带的最优构型均为椅式构型, 并均表现为非磁的半导体性质. 全氟化能够有效地增大锗纳米条带体系的带隙, 其带隙随着条带宽度的增加而减小. 部分氟化的锯齿型锗纳米条带展现出反铁磁半导体的性质, 而相应的扶手椅型锗纳米条带则为非磁性的半导体; 这些体系的带隙随着氟化程度的增加而增大, 其中部分氟化扶手椅型锗纳米条带的带隙展现出三族行为. 所有部分氟化的锗纳米条带均与未氟化部分对应的等宽度锗纳米条带表现出几乎相同的电学和磁学行为, 表明氟化能够有效调控锗纳米条带的电学和磁学性质. 另外, 所有氟化的锗纳米带都具有较高的结构稳定性.

关键词: 第一性原理计算, 锗纳米条带, 氟化, 能带结构, 电学和磁学性质

Abstract:

By means of the first principles computations, the geometries, stabilities, electronic and magnetic properties of fully and partially fluorizated Ge nanoribbons(GeNRs) with the zigzag or armchair edges were investigated. The computed results reveal that the chair-like configuration is the most energetically favorable one for fully fluorizated GeNRs(fF-GeNRs), regardless of the edge chirality. The full fluorization can widen the band gap of GeNR, and these fF-GeNRs systems can exhibit the uniform nonmagnetic semiconducting behavior, where the band gap decreases with the increase of ribbon width. The partially fluorizated zigzag GeNRs(pF-zGeNRs) are the antiferromagnetic semiconductors, while the partially fluorizated armchair GeNRs(pF-aGeNRs) are the nonmagnetic semiconductors. The band gap of pF-GeNR systems can increase with the increase of fluorization ratio, but the variation of band gap can exhibit three-family-behavior for pF-aGeNRs. Moreover, all the pF-GeNRs systems can exhibit the almost same electronic and magnetic properties as the remaining pristine GeNRs without fluorination, which can provide an effective approach to experimentally produce “narrow” GeNRs in a large scale. Clearly, fluorization is an effective strategy to modulate the electronic and magnetic properties of GeNRs, and particularly these fluorizated GeNRs systems can possess the high structural stabilities. These intriguing insights can be advantageous for promoting the practical applications of excellent Ge-based nanomaterials in the multifunctional nanodevice etc.

Key words: First-principles computation, Ge nanoribbon, Fluorization, Band structure, Electronic and magnetic property

中图分类号: 

TrendMD: