高等学校化学学报 ›› 2009, Vol. 30 ›› Issue (4): 697.doi:
张勇1,2, 丛茜1, 谢云飞3, 赵冰3
ZHANG Yong1,2, CONG Qian1, XIE Yun-Fei3, ZHAO Bing3*
摘要:
测定了120个产自福建、安徽和云南烟草样品的近红外光谱. 在利用支持向量机(SVM)技术建立其定量、定性分析模型之前, 用小波变换技术对光谱变量进行了有效的压缩, 然后采用径向基核函数建立了75个烟草样品的分类模型, 同时建立了总糖、还原糖、烟碱和总氮4个组分的定量分析模型, 并利用45个烟草样品对模型进行了检验. 仿真实验表明, 建立的SVM分类模型分类准确率达到100%, 而4个组分的定量分析模型的预测决定系数(R2)、预测均方差(RMSEP)和平均相对误差(RME)3个指标值显示其模型泛化能力非常强, 预测效果良好, 可见这是一种有效的近红外光谱的建模分析方法.
中图分类号:
TrendMD: